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PREFACE

This proceeding contains the papers presented at the 1991

Army Symposium on Solid Mechanics, held at Plymouth,

Massachusetts, November 4 - 7, 1991. It was the twelfth in a

series of biennial symposia with focus on solid mechanics

research achievements which impact defense system needs. The

symposia series which dates back to 1966 has been sponsored by

the Army Materials Technology Laboratory in its role as the US

Army lead laboratory for solid Mechanics research and exploratory

development.

Each symposium has its theme which emphasizes a particular

subject of interest. The theme of 1991 symposium is "Synergism

of Mechanics, Mathematics and Materials." The need to interact

among these three disciplines are well known, and the derived

benefits have long been demonstrated. The symposium is organized

into seven technical sessions covering subjects from basic

research to applications. Many. papers amplify the importance and

benefits of synergism among the three disciplines. These papers

have been subjected to the usual review process and revisions, if

any required.

The Symposium Chairman wishes to thank Dr. Gordon A.

Bruggerman, Acting Director of MTL and Dr. George H. Bishop, Jr.

Director of Materials Reliability Division of MTL for their

support and encouragement required to take on the task of running

the Symposium. I want to thank the members of The



Technical Program Committee particular to Dr. Julian Wu of The

Army Research office and Professor Thomas C.T. Ting of University

of Illinois at Chicago, for many of the ideas for the symposium

and for putting together the individual sessions. I wish to

acknowledge Miss Karen Kaloostian, MTL Conference Coordinator for

the arrangements before and during the Symposium. Universal

Technology Corporation, the Symposium Administrator's effort for

assembling the programs, abstracts and the proceedings for

publication should be acknowledged.

Watertown, Massachusetts

SHUN-CHIN CHOU
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SYNERGISM OF MECHANICS, MATHEMATICS AND

ANISOTROPIC ELASTIC MATERIALS

T. C. T. Ting

Department of Civil Engineering, Mechanics and Metallurgy,
University of Illinois at Chicago, Box 4348, Chicago, IL 60680

INTRODUCTION

Anisotropic elastic materials are interesting materials. A simple
tensile stress applied to the material produces not only an extensional
strain but also a shear strain. Likewise, a pure shear stress applied to
the material produces a shear strain and an extensional (or compression)
strain. Therefore a loading which is symmetric (or antisymmetric) with
the x2 -axis, say, in general does not produce a deformation which is
symmetric (or antisymmetric) with the x--axis. There are surprises in
which anisotropic materials behave like isotropic materials. These will
be pointed out in the paper.

In contrast to isotropic elastic materials which have two elastic
constants, anisotropic elastic materials may have as many as twenty one
elastic constants. When two-dimensional deformations are considered,
the analysis still requires fifteen elastic constants. In view of this, there
is a wide spread and justifiable misconception that the analysis of
anisotropic elastic materials is much more complicated than that of
isotropic elastic materials. This is not necessarily true if one employs
the Stroh formalism. With the Stroh formalism the solutions to
anisotropic elasticity problems are in most cases simpler than those for
isotropic elasticity problems. The reason is simply that isotropic
materials are more than a special case of anisotropic materials. They are
mathematically degenerate materials.

Much progress has been made since Stroh's two pioneering
papers appeared in 1958 and 1962 [1,2]. We will point out in the paper
the integral formalism of Barnett-Lothe [3] which allows us to compute
three Barnett-Lothe tensors S, H and L, which are real, without finding
the Stroh eigenvalues p and the associated eigenvectors a, b, which are
complex. We will also point out some identities which enable us to
convert certain combinations of p, a and b to S, H, L and other real
quantities. Owing to these identities, several existing complex form
solutions are simplified to real form solutions and solutions are obtained
for some heretofore unsolved problems. As a result, many physically
interesting and unexpected phenomena, which have been shrouded in the
complex form solutions, have been discovered recently. Most of the
unexpected phenomena defy an intuitive explanation.
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The Stroh formalism is not only mathematically elegant and
technically powerful, but some of its mathematical quantities such as the
eigenvalues p and the eigenvectors a and b have physical meanings. The
mathematical structure of S, H and L provides us a rare insight into the
relations between anisotropic and isotropic materials.

For isotopic materials the in-plane displacement and the
antiplane displacement are uncoupled. The in-plane displacement (u1,
u2 ) and the associated surface traction vector on any boundary F are
polarized on the (xI, X2 ) plane while the antiplane displacement u 3 and
the associated surface traction are polarized along the x 3 axis. For
general anisotropic materials under the assumption of two-dimensional
deformations, the u 3 component is in general non-zero and cannot be
uncoupled from the in-plane displacements ul, u2 . This does not mean
that there are no planes or axes on which the displacement and the
surface traction are polarized. There are, as we will show, oblique planes
and axes on which the displacement and the surface traction are
polarized.

The synergism of mathematics and mechanics appears to work
very well for anisotropic elastic materials. Examples presented in the
paper illustrate that this is indeed the case.

1. THE STROH FORMALISM. In a fixed rectangular coordinate
system xi (i = 1, 2, 3) let ui, oij be, respectively, the displacement and
stress in an anisotropic elastic material. The stress strain laws and the
equations of equilibrium are

lij = CijksUk,s (1.1)

Cijksuk,sj = 0, (1.2)

where a comma stands for differentiation, repeated indices imply
summation and Cijks are the elasticity constants which are assumed to
possess the symmetry property

Cijks = Cjiks = Cijsk = Cksij•

For two-dimensional deformations in which ui (i = 1, 2, 3) depends on
x1 , x2 only, a general solution to (1.2) is, in matrix notation,

u=af(z), z=x 1 +px 2. (1.3)

In the above f is an arbitrary function of z, and p and a are determined
by inserting (1.3) into (1.2). We have
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{Q+ p(R + RT) + p 2 T} a = 0 (1.4)

where the superscript T denotes the transpose and Q, R, T are 3x3 real
matrices whose components are

Qik = Cilkl, Rik = Cilk 2 , Tik = Ci 2k2. (1.5)

We note that Q and T are symmetric and, subject to the positiveness of
strain energy, positive definite. The stresses obtained by substituting
(1.3) into (1.1) can be written in terms of the stress function ý as

ain = -- i,2' 'i2 = 4 i,1' (1.6)

in which

Sb f(z), (1.7)

b = (RT + pT)a =-,(Q + pR)a. (1.8)
p

The second equality in (1.8) follows from (1.4). It suffices therefore to
consider the stress function ý because the stresses aij can be obtained by
differentiation.

There are six eigenvalues p and six eigenvectors a from (1.4).
Since p cannot be real if the strain energy is positive [4], there are three
pairs of complex conjugates for p. If pa' aa, ba (a = 1, 2,..,6) are the

eigenvalues and the associated eigenvectors we let

Im pa > 0, Pa+3 = pa' aa+3 = aa) ba+3 =ba (1.9)

(a = 1, 2, 3), where Im stands for the imaginary part, the overbar
denotes the complex conjugate and ba is related to a a through (1.8).

Assuming that the pa are distinct, the general solutions for u and

obtained by superposing six solutions of the form (1.3) and (1.7) are

3

u = faafa(za) + aa3 )1

a=1

3 (1.10)

* ~ = afaza) + Tafa+3(za,)}.
a=1

In (1.10) fl, f2,..., f6 are arbitrary functions of their argument and
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Za= x1 + PaX2.

The above formalism is due to Stroh [1,2]. In applications all we
have to determine is the form of the arbitrary functions fa" What
distinguishes the Stroh formalism from others is that there are relations
between aa and ba which allow us to find the solution easily and/or to
simplify the solution obtained. These relations and the Barnett-Lothe
integral formalism are presented next.

In closing this section we note that, in most applications, fa has

the same function form so that we may write

fa(za) = q-(za),

f+3(z) = -a(z), a= 1, 2, 3,

where qa are arbitrary constants. The second equation is for obtaining
real solutions for u and ý. Equations (1.10) can then be written as

3 3
u = 2 ReIa aqf(za), *=2 Relbaqj(za). (1.11)

a=1 a=1

2. THE BARNETT-LOTHE TENSORS. The two equations in (1.8)
can be rewritten as

TI I] [] = [T 0] [b]

where I is the 3x3 identity matrix. Multiplying both sides by the matrixT :-1 1
leads to the standard eigenrelation [5,6]

Ný = pý, (2.1)

N= , C= a (2.2)
N3 1-
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N 1= -T-RT, N2 =T- 1, N3 =RT-1 RT -Q. (2.3)

It is clear that N2 and N3 are symmetric and N2 is positive definite. It
can be shown that -N 3 is positive semi-definite [7]. Moreover, -N 1 and
-N 3 have the structure

-NI= 0 -N3= 0 0 0 (2.4)
*0 ** 0 *

in which the * denotes a possibly non-zero element. These * elements
have surprisingly simple expressions in terms of elastic compliances [7].
The structure of N 1, N 3 shown in (2.4) plays important roles in solving
problems and interpreting the final solutions.

The vector = (a, b) in (2.2) is the right eigenvector of N. It
can be shown that (b, a) is the left eigenvector. The left and right
eigenvectors associated with different eigenvalues are orthogonal to each
other. The orthogonality relations can be normalized such that

a'b 0 + ba'ap = 'a# (2.5)

where 6 is the Kronecker delta. Introducing the 3x3 matrices A and B
by

A = [a,, a2 , a3], B = [bl, b2, b3], (2.6)

and employing (1.9), the orthogonality relations (2.5) take the form

[BT ATI [A 1 [I 1 01. 27
[fT XTT BBJ = [0 1 (

The two 6x6 matrices on the left are the inverses of each other and their
product can be interchanged. The interchanged product is

ABT + ±--•T =I= BAT +±B-AT,
(2.8)

AAT + A-AT = 0 = BBT + E--T.

Equations (2.8) tell us that the real part of ABT is 1/2 and that

AATand BBT are purely imaginary. Hence the three matrices S, H, L,
defined by

S = i(2ABT - I), H = 2iAAT, L = -2iBBT, (2.9)
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are real. It is clear that H and L are symmetric. It can be shown that

they are positive definite, the products

SH, LS, H- 1 S, SL-1

are antisymmetric, and the relation

HL- SS = I (2.10)

holds [3,6].

The formulation presented so far assumes that the eigenvalues p
are distinct. If PI = P2, say, and a, = a 2, the solution (1.10) is not
general. The matrices A and B would be singular and the orthogonality
relation (2.7) is not valid. Anisotropic materials for which Pi = P2 and
a, = a2 are called degenerate materials. They are degenerate in the
mathematical sense, not necessarily in the physical sense. Isotropic
materials are a special case of degenerate materials for which Pi = P2 =
P3 = i and a, = a 2 j a3. In many applications however the final solution
depends only on the three real matrices S, H, L defined in (2.9). Barnett
and Lothe [3] devised an integral formalism of these three real matrices
which circumvented the need of determining the eigenvalues and the
eigenvectors. Thus the problem of degenerate materials disappears. The
integral formalism is as follows. Define the three real matrices

qik(O) = Cijksnjns, Rik(O) = Cijksnjms, Tik(O) = Cijksmjms, (2.11)

in which 0 is a real parameter and

ni = [cosO, sino, 0], mi = [-sin0, cos0, 0].

Equations (2.11) reduce to (1.5) when 0 = 0. Next consider the
incomplete integrals

0 0

S() f N1 (w)dw, H() f N2(w)dw,
0 0f

(2.12)
0
L(O -N 3 (w)dw,

where

N1 (0) = -T-(o)RT(0), N2 (0)= T-1 (0),

N3 (0) = R(0)T-I(O)RT(0) - Q(0).
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Ni(O) reduce to Ni in (2.3) when 0 = 0. When 0 = 7r we have the
complete integrals S(7r), H(7r), L(7r). Barnett and Lothe proved that S,
H, L of (2.9) are identical to the complete integrals, i.e.,

S = S(7r), H = H(7r), L = L(7r). (2.13)

Thus S, H, L are called the Barnett-Lothe tensors and S(0), Hf0), L(0)
the associated tensors. In the sequel, dependence of S(0), H(), L(0)
on 0 will be given explicitly unless 0 = 7r, and dependence of Ni(0) on 0
will be given explicitly unless 0 = 0.

As we see from the integrals in (2.12), there is no need to
determine the eigenvalues p and the associated eigenvectors a and b.
This is a remarkable result which has been widely used in the analysis of
anisotropic elasticity. It should be pointed out that there are cases in
which the final solution cannot be presented entirely in terms of
Barnett-Lothe tensors and their associated tensors. In that case we
have to modify the general solution (1.10) for degenerate materials [8,9].

For isotropic elastic materials use of (2.12) leads to

0 -1 0 ] K 0 0

S=s 1 0 01 H= 1 0 02 0 ,0 L (2.14)
0 01-0 0 0 -0 0 1 0 0 1

where 1 is the shear modulus,

1 1-2v

and v is the Poisson ratio. For general anisotropic materials the
structure of S, H, L is more complicated. For orthotropic materials and
for monoclinic materials with the plane of symmetry at x3 = 0, explicit
expressions of S, H, L are obtained in [10,11]. We will show later that, if
a proper oblique coordinate system is chosen as the natural base of the
tensors S, H, L, the tensor components Sij, Hij and Lij for general
anisotropic materials have the exact expressions as that shown in (2.14)
for isotropic materials.

3. PHYSICAL MEANINGS OF THE EIGENVECTORS a AND b. Let

a', a" be the real and imaginary parts of a,

a = a' + ia".

A complex vector is also called a bivector [12,13]. The real vectors a'
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and a" span a plane. If i is obtained by multiplying a by a complex

factor e i where 0 is real,

&=e1i a=,+1ia',

in which

i' = a'coso - a"sino, (3.1)

V = a'sino + a"coso.

Thus the real and imaginary parts of i lie on the plane spanned by a'
and a". Therefore the plane is called the polarization plane of a, or
simply the plane a, which is invariant with the multiplication factor on

a. As 0 varies (3.1) show that i' and V" trace an ellipse. A pair of
diameters in an ellipse is said to be conjugate if all chords parallel to one
diameter are bisected by the other diameter. Therefore the tangent at
the extremity of one diameter is parallel to the other diameter. It can be

shown that i' and V" form a pair of conjugate radii. One could choose a

0 such that i' and V" are orthogonal and hence are the principal radii of
the ellipse [14].

It is clear that the bivector a and its complex conjugate a
define the same polarization plane.

Consider now the solution (1.3). The displacement u is a
bivector a multiplied by f(z). Regardless of the position (xI, x2), f(z) is a

complex factor of the form peio where p is real. Whether we take the
real or imaginary part of a f(z), u is polarized on the plane a for all
(Xl, x2). Likewise, the stress function * of (1.7) is polarized on the
plane b. If t r is the surface traction vector on a curved boundary F, it

can be shown from (1.6) that

tr = (3.2)

where 77 is the arclength of F measured in the direction such that the
material is located on the right hand side of F. Equations (1.6), and
(1.6)2 are special cases of (3.2) when F is the surface x, = constant and
X2 = constant, respectively. Since * is polarized on the plane b, (3.2)
tells us that the surface traction t r is polarized on the plane b.

The general solution (1.10) or (1.11) implies that there are three
polarization, planes a,, a2, a 3 for the displacement u and three
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polarization planes bl, b2, b3 for the surface traction t . For monoclinic

materials with the plane of symmetry at x 3 = 0, a,, a2, bx, b 2 all define
the same plane, namely, the (xI, x 2) plane. As to a 3 and b 3, their real
and imaginary parts are parallel. The polarization planes degenerate
into lines parallel to the x3-axis. The displacement associated with a 3
and the surface traction t r associated with b3 are in the x3 direction.

In summary, there are three independent (or three
one-component) solutions for general anisotropic materials. The
displacement of a one-component solution is polarized on the plane a
while the surface traction on any boundary is polarized on the plane b.
To satisfy a prescribed boundary condition, all three one-component
solutions are in general needed. In surface waves, there are
one-component surface waves [15, 16] and two-component surface waves
[17, 18]. For Green's functions for the infinite space due to a line force
and a line dislocation, there are one-component Green's functions. The
latter will be discussed in Section 5.

4. THE S TENSOR. Of the three Barnett-Lothe tensors, the tensor S

is the most interesting one. By writing S as

S = L-I(LS), (4.1)

S is the product of the symmetric positive definite tensor L-1 and the
antisymmetric tensor LS. It has the property that

trS=0, detS=0.

Therefore the eigenvalues of S are 0 and Fis where

s= {-½tr (2)}1/2. (4.2)

Denoting the associated eigenvectors by e3 and elie2 where el, e2, e3
are real, we have

S(elie2) = :is(elie2), Se 3 = 0. (4.3)

Thus e3 is the right null vector of S and elie2  are the right

eigenvectors. The new right eigenvectors 6 1±i62  obtained by
multiplying elie2 by a complex factor span the same plane as elie2.
Therefore the plane spanned by (el, e2) is called the right eigenplane.

Let el, e2, e3 be the reciprocal of el, e2, e3 so that

ei ej = bij. (4.4)
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Consider the following tensor components of S, H, L :

S = Sij ei 0 eJ, H = Hij ej ® ej, L = Lij ei 0 eJ. (4.5)

Using (2.10) and the fact that SH, LS are antisymmetric, the matrices
formed by Sij, Hij, Lij can be shown to have the structure given in (2.14)
where s, gL, K are now independent constants [19]. Thus as far as the
Barnett-Lothe tensors are concerned, anisotropic materials are identical
to isotropic materials if we choose an oblique coordinate system
represented by el, e2, e3. For isotropic materials el, e2, e3 are unit
vectors in the direction of the x1 , x2, x3 axis, respectively.

It should be pointed out that (el, e2) and e3 are, respectively,
the left eigenplane and the left null vector of S. Do ej, eJ have physical
interpretations? They do. They are explained in the next Section.

5. GREEN'S FUNCTIONS FOR LINE FORCES AND LINE
DISLOCATIONS IN THE INFINITE SPACE. There are several
interesting properties associated with Green's functions for the infinite
space due to a line force f and a line dislocation with Burgers vector b
applied along the x3 axis. The basic solution is obtained from (1.11) by
choosing the function f(za) such that

3 3

U 1 Im a qln z, Im b q In z (5.1)u= I ) a
a=1 a=1

Since In z a is a multi-valued function we introduce a cut along the

negative xl-axis. In the polar coordinate system

x1 =rcos0, x2 = r sinO, (5.2)

the solution (5.1) applies to

-7r< 0<7r, r>0.

Therefore

lnza =lnr±ii- at 0= ±r, fora= 1, 2, 3. (5.3)

Equations (5.1) represent three one-component Green's
functions. For each a, u is polarized on the plane a and the surface

traction t is polarized on the plane ba* The discontinuities in u and '

across 0 = +wr are, respectively, the line dislocation b and the line force
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f L for the one-component Green's function. Hence by (5.3),

ba = 2 Re(aaqa), f3 = 2 Re(baqa), (5.4)

which show that ba is on the plane a and f a is on the plane b . We

therefore have the result that the one-component Green's function has u

and ba polarized on the plane a a and has f a and the surface traction tF

polarized on the plane b a

To obtain a one-component Green's function we may assume an

arbitrary complex constant qa, Equations (5.4) then provide ba and f a

required for the one-component Green's function. Alternately we may

prescribe an f a which lies on the plane ba, Equation (5.4)2 can be

solved for q and (5.4), gives the associated ba. To solve (5.4)2 for qa'

let the real and imaginary parts of ba and q a be written as

a a ib, ' +ia-a

We then have
f a 2(bqý- b"-1)

from which q' and qa can be determined.

When f and b are prescribed arbitrarily, we need all three
one-component Green's functions for the solution. Making use of (2.6),
(5.1) are rewritten as

u=1 Im{A<ln z>q}, * = 1 Im{B<ln z>q}, (5.5)ir ir
in which

T = [qI, q2, q3]

and

<ln z> = diag[ln z1, In z2, In z3]

is a diagonal matrix. Equations (5.5) must satisfy the conditions

u( 7r) - u(-7r) = b,

V70 - V-70 = f
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which lead to

2 Re(Aq)= b, 2 Re(Bq) = f (5.6)

This can be written as

It follows from (2.7) that

[ [BT AT bl

Hence

q = ATf+ BTb, (5.7a)

or

qa= aa* f + ba* b. (5.7b)

Inserting (5.7b) into (5.4) gives us ba and fa in terms of b and f

We show next that the solution (5.5) together with (5.7a) can be
rewritten into a real form. Equations (2.9) are identities which convert
certain combinations of complex quantities involving A, B to real
quantities S, H and L. The following identities are useful for problems
related to line forces and line dislocations [20].

2 A<ln z>AT= -i[(ln r)I + 7rS(O)]H + 7rH(O)[I - isWT

2 B<ln z>AT = [(ln r)I + ?rsW(0)] (. - is T) irL(0),

2 A<ln z>BT - [(ln r)I + 7rS(O)][I - iS] + i~rH(O)L,

2 B<ln z>Bw = i[(ln r)I + 7rST(O)]L - irL(O)[I - iS].

These identities allow us to convert the complex expressions on the left
to real quantities shown on the right which are obtainable directly in
terms of elasticity constants through (2.12) and (2.13). With the
identities (5.8), the solution (5.5) together with (5.7a) is converted into a
real form as
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2u = 1 (In r)h - S(0)h + H(0)g,

1 (In r)g + L(0)h + sT(0)g, (5.9)

where

g = Lb- S T f h = Sb + Hf (5.10)

From (3.2), the surface traction to on any radial plane 0 = constant is in

the direction of g which is invariant with the choice of the radial plane.
The infinite displacement u0 at r = 0 is in the direction of h. Moreover,
the relation [14]

g-h= f-b

is easily established using (2.10) and the anti-symmetric property of LS
and SH.

We now present physical interpretations of ei and ei. Using

(4.5) and the discussions following (5.10), (5.10) can be written as

29rrt 0 = g = [Lj(eJ. b) - SJi(ej.f)]ei,

-2r(ln r)-lu = h = [Sij(ei. b) + Hii(ej .f)]ei.

With the structure of Sij, Hij, Lij shown in (2.14) and using (4.4), it can
be shown that if b is along e3 and f is along e3 , u0 is in the direction of e3
and t 0 in the direction of e3. On the other hand, if b is on the right

eigenplane (el, e2) and f is on the left eigenplane (el, e2), u0 is polarized
on the right eigenplane and t0 is polarized on the left eigenplane. More

relations between el, e2, el,e2 and b and f can be found in [14].

6. BIMATERIALS AND INTERFACE CRACKS. Let 0 = 00 be the
interface between two materials in the bimaterial. The half-space 00 <
0 < 00+r is occupied by material 1 and the other half-space 0 o-r < 0 <
0o is occupied by material 2. They are rigidly bonded together along 0 =
00. For a line force f and a line dislocation b applied at the origin r = 0,
(5.9) is a basic solution which applies to both materials. We may add
constant terms to the right hand sides of (5.9) which produce a rigid
body displacement but no stresses. Therefore consider the solution

2 ul(r,0) = •(ln r)h - [SI(0)-S (00)]h + [ 1 l(0)-H1(0o)]g,
T T (6.1)

2 ý 1(r, 0) 1 (In r)g + [Lx(0)-L 1 (Oo)]h +[ST(0)-ST(0o)]g,
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for material 1 in 00 < 0 < 00+w. The subscript 1 denotes material 1.
The solution for material 2 is obtained from (6.1) by replacing the
subscript 1 by 2 while keeping the same constants g and h. It is readily
shown that the continuity of u and $ at 0 = 00 is automatically satisfied.
The discontinuity in u and ý across 0 = 0o + 7r, which should be equal to
b and f, respectively, leads to two equations for g and h which are
independent of 0o [211. Therefore, the stresses obtained by substituting
C1 of (6.1) and similar equation for $2 into (1.6) are independent of the
location 00 of the interface ! This unexpected phenomenon defies an
intuitive explanation even for isotropic bimaterials.

One of the most studied problems in anisotropic elasticity is the
problem of interface cracks in bimaterials [22-33]. Let x2 > 0 be
occupied by material 1 and x2 < 0 be occupied by material 2. The
interface crack of length 2a is located at

X2 = 0, lx1i < a.

The bimaterial is subject to a uniform traction t F and -tF at the crack

surfaces x2 = +0 and -0, respectively. The stress singularities near a

tip of the interface crack is proportional to r6 where r is the radial
distance from the crack tip and 6 is a constant depending on the material
property of the bimaterial. It is shown in [24] that there are three
singularities given by

6=-T - +i, and 1i7,
where

1 ln-1-- tanh-l-

[= [ltr(§2)]1I 2 < 1. (6.2)

In the above

= D-lW, (6.3)

D=L11 +L2 1I W=S IL1-s 2C21

in which D is symmetric, positive definite and W is anti-symmetric.

Thus S has the same properties as the S tensor. The eigenvalues of S are
: if and 0 and the associated right eigenvectors are denoted by dliid2 and
do, respectively. The left eigenvectors can be shown to be D(dT-id 2) and
Dd0 [34]. Hence do, Dd 0 are, respectively, the right and left null vectors
while the planes spanned by (di, d2) and (Dd1 , Dd 2) are the right and left
eigenplanes.
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The two materials in the bimaterial are said to be mismatched
whenWj 0. W= 0 if and only ifjP= 0 (and hence7= 0) [24, 25].
For mismatched bimaterials (7y j 0), the displacement at the crack
surface is oscillatory. This leads to the physically unacceptable
interpenetration of the crack surfaces.

When /5 = 0 the solution in materials 1 and 2 both have the
expression

u = Re {A<f(z)>B- 1}t, (6.4)

$ = Re {B<f(z)>B- 1 }tr,
in which

f(z) = )z 2 --a2 - z.

Of course A, B and z in material 1 and material 2 would be different.
There is no oscillation in displacement and the stress has the square root
singularities.

The following results are taken from [34]. When / # 0, the
solution is still given by (6.4) if the applied traction t r is the null vector

of W, i.e., if

Wtr = 0,

or, by (6.3),

Str = 0.

Thus when the applied traction is in the direction of the right null vector

do, there is no oscillation in displacement. The crack surface opening

^u = u(x1, +0)- u(x1,-o-), x II < a,

is in the direction of the left null vector Dd0 and the surface traction on
the surface x2 = 0 outside the crack is in the direction of the right null
vector do.

If the applied traction is not in the direction of do, we
decompose it into two components. One is along the right null vector do
and the other is on the right eigenplane (dj, d2). Explicit solutions
associated with the one on the right eigenplane can be found in [34] in
which the displacement is oscillatory. It suffices to mention that the

crack surface opening au lies on the left eigenplane of S while the surface

traction along the surface x2 = 0 lies on the right eigenplane of S.
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DISCUSSION

We have shown that, in many respects, anisotropic elastic
materials have properties which are similar to, or generalization of, the
properties of isotropic materials. Analogous to the antiplane
deformations of isotropic materials, anisotropic materials have
deformations which are polarized in one direction while the surface
traction vector on any boundary is polarized on a different direction.
Similar to the in-plane deformations of isotropic materials, anisotropic
materials can have deformations which are polarized on one oblique
plane while the surface traction vector on any boundary is polarized on
another oblique plane.

Simple problems for which we thought we have understood them
thoroughly still yield new information due to the simplification of the
solutions by the Stroh formalism. For example, consider the Griffith
crack of length 2a located at x2 = 0, 1xi < a in the infinite anisotropic
elastic medium. When the traction applied at the crack surfaces is in
the direction of the x2 axis, the crack opening is in general not
symmetric with the x2 axis as expected. However, the x, axis outside the
crack remains a straight line (i. e., the u2 component of the displacement
along the x, axis vanishes). If the traction applied at the crack surface is

the null vector of S-1 , all three displacement components along the x,
axis vanish. If the applied traction is in the direction of the vector
formed from the second column of L, the hoop stress vector along the
crack surface is independent of x, [21].

Other interesting properties worth mentioning are the physical
implications of the eigenvalues p. For the Green's functions for a
half-space subject to a singularity in the form of line forces and line
dislocations, the solution can be obtained by a superposition of the
Green's function due to the same singularity for the infinite space and
several image singularities located outside of the space occupied by the
material. The locations of the image singularities are determined
exclusively by the eigenvalues p. Moreover, the locations of the image
singularities are independent of the nature of the singularities concerned
[351. If the singularities are line forces and line dislocations, the image
singularities are also line forces and line dislocations. For degenerate
materials for which isotropic materials are a special case, two or more of
the image singularities coalesce into one singularity, creating a new
singularity in the form of a double force, a concentrated couple, and/or a
higher order singularity which are well known for isotropic materials [36]
but have not been satisfactorily explained in the past.
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1. Introduction
There are multiphase processes that are essentially isothermal with

kinetics driven by mass transport and stress, an example being coarsen-
ing or Ostwald ripening, in which a phase, quenched into a metastable
state, exhibits late-stage kinetics characterized by the dissolution of
second-phase domains with large interfacial curvature at the expense of
domains with low interfacial curvature. In [1] we developed a continuum-
mechanical framework within which such processes can be discussed. We
here discuss the results of [1].

We consider a two-phase system consisting of bulk regions separated
by a sharp interface endowed with energy and capable of supporting
force, following- and in certain respects generalizing - the framework
set out in [2-5]. We base our discussion on balance laws for mass and
force in conjunction with a version of the second law appropriate to a
mechanical system out of equilibrium. We assume that mass transport
is characterized by the bulk diffusion of a single independent species; we
neglect mass diffusion within the interface.

2. Theory without deformation.
We neglect deformation and bulk stress, but allow the diffusion po-

tential (chemical potential) to be discontinuous across the interface. We
develop a heirarchy of free-boundary problems at various levels of ap-
proximation, framed in terms of the departure u = p - yo of the
diffusion potential p from the transition po, which is the poten-
tial at which the phase change would occur were interfacial structure ne-
glected. For small departures from p'o the basic system of equations,
neglecting diffusional transients, consists of a PDE in bulk supplemented
by three interface conditions. The PDE has the form

divh = 0, (1)
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where h, the mass flux, is given by

h = -DXVu in phase a, (2)

h = -D#Vu in phase /,

with D,, and D6 constant mobility tensors. The first interface
condition is balance of mass

h- v - AV = h+v- BV = J, (3)

in which h- and h+, respectively, represent the limits of h
from the a and /P phases, A and B are constants rep-
resenting the density in the a and /0 phases at the potential
tio, v is the unit normal to the interface directed out of phase a,
and V is the normal velocity and K the curvature of the interface.
The second interface condition, essentially constitutive, characterizes the
net mass flux J defined in (3):

J = -b 21 (v)V - b2 2 (v)[u], (4)

where b2 1(v) and b22(v) are constitutive moduli, while []
(in boldface) denotes the jump across the interface (/P minus a). The
third interface condition generalizes the classical "Gibbs-Thomson rela-
tion" to situations in which the chemical potential is discontinuous across
the interface:

Bu+ - Au- = f(v)K + div c(v) - b1 1(v)V - b12(v)[u], (5)

where f(v) is the interfacial energy,

c(V) = -cavf(v) (6)

is the surface shear, b11(v) and b12 (v) are constitutive moduli,
and div. is the surface divergence.

We also establish global growth relations for solutions of the un-
derlying equations. In particular, solutions of the quasi-static equations
(1)-(6) consistent with the boundary condition

h. n on 4%2 (7)

satisfy

VO1(,) = 0, {/f(v)da}" < 0. (8)
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Here Q,,(t) is the region occupied by phase a, while s(t) =

aQ,,a(t) represents the interface. The relations (8) yield a formal justi-
fication for the statical Wulff problem, which, in the present context, is
to

minimize J f(v)da (9)

over all interfaces s = aQL, with vol(Q?,) prescribed.

3. Theory with deformation and bulk diffusion.
We include deformation and stress, but limit our discussion to a

continuous potential and to a coherent interface. In addition, we consider
only infinitesimal deformations, neglecting inertia. We derive a quasi-
static theory analogous to (1) - (6). The bulk equations of this theory
are

DivT = O, divh = 0 (10)

supplemented by (2), where T , the stress, is given by the stress-
strain relations

T = Lca[E - EO0.] in phase a,

T = L#[E - E0p] in phase /3,

with L, and Lp the (constant) elasticity tensors,

E = 1-(Vu + VuT) (12)

the strain tensor, and E0 , and Eo0 the (constant) stress-free
strains in phases a and /3 The corresponding interface condi-
tions are

Lu = [W(E - Eo)l - Tv . [Vulv + f(v)K + div.c(v) - b(v)V, (13)

V = [h]. v, TITV = 0,

where W(E - Eo) is the strain energy, defined, e.g., in phase a
by 1[E - Eo,]" L,[E - Eo0 ], b(v) is a constitutive modulus, and
t is a constant. We consider solutions of (10) - (13) consistent with
(7) and the dead-load condition

u" = 0 on a portion U of o9, Tn = T*n on the remainder, (14)

with T*(= constant) prescribed, where Q•, with outward unit
normal n, is the fixed region of space occupied by the body. We
prove that such solutions satisfy the global growth relations

vol(Q,)" = 0,

{J {W(E - Eo ) - T*. (E - Eo)}dv + s f(v)da < (1_0,
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relations that suggest the following variational problem: given vol(Q0 , )
and boundary displacements g(x) on U,

minimize J{W(E - Eo) - T* . (E - Eo)}dv + sf(v)da (16)

over all interfaces s = 0a8 and all displacement fields u that
are continuous across a and satisfy u = g on U. This problem
- a natural generalization of the Wulff problem - is purely mechanical:
the diffusion potential is not involved.

We also discuss a quasi-linear theory in which the elliptic equations
(2), (10)2 are replaced by parabolic equations. This theory leads to the
following variational problem, in which the diffusion potential plays an
important role:

minimize

T* [Eojvol(Q,) + j{W(E - E 0 ) - T. (E - E 0 ) + Cu 2 )}dv + jf(m)da

(17)

subject io

-[Ajvol(fa) + jn{2Cu + G. (E - Eo)}dv =

over all interfaces s = 0aP and all displacement fields u that
are continuous across s and satisfy u = g on U. Here C
is a constitutive modulus having values C,, and Cp in phase
a and P3, while m 0  is a prescribed constant.
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INTRODUCTION

Model reduction methods are useful in cases where the most complete
mathematical model known for some physical system is so intricate in its details
so as to become essentially intractable. Predictions from such models are "costly"
to extract and usually contain information well in excess of one's needs. A model
reduction process mathematically produces a simpler model from the original
complex model such that the simpler model contains only the "essential physics"
of the physical system. (It is usually assumed that the source of the complications
in the original model is not associated with the applied external stimuli; that is, the
complications are inherent in the physical system itself.) An abstract mathemati-
cal framework [ 1-2] exists for systematically synthesizing simpler mathematical
models from complex ones. Model reduction methods which lie within this frame-
work have been applied to a number of diverse areas. As an important example,
model reduction methods have been applied, (under the names homogenization
[3-4], effective medium and self-consistent theories [5], variational bounds (for
bulk properties) theories [6], differential scheme [7], and others), to the synthesis
of effective macroscale constitutive relations from specified inclusion-matrix
scale constitutive relations for composite materials. The constitutive relations syn-
thesized reflect an "equivalent", homogeneous material which responds, on the
macroscale, just as the original composite material does. Model reduction meth-
ods have also been applied to problems in nonequilibrium statistical mechanics [8]
and the reduction of particle (kinetic) models to diffusional (hydrodynamic-like)
models [9].

Most mathematical models of the physical systems of interest in engi-
neering and applied science take the generic form

Aq = f (1)

and

q = Xu, (2)
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where the physical system itself is modeled by the mappings A and 1, all of the de-
pendent variables of the mathematical model are contained in q with a subset of them
contained in u, and where f contains the source or load functions driving the system
response. Equation (1) represents the material-composition-independent, fundamental
(usually conservation) laws of the system and its boundary conditions. Equation (2)
represents the constitutive relations for the specific material composition of the system.
The combination of equations (1) and (2) as given by

Lu =f, (3)

where

L = Al , (4)

usually takes the form of one or more governing differential or integro-differential
equations, boundary conditions, and initial conditions (if relevant). (In the common no-
tation used here, Lu is shorthand for the mapping, by L, of u into L (u) . Similarly,
Alu is shorthand for A (I (u)) , and so on.)

In model simplification one synthesizes a new mathematical model

LefoU0 = f (5)

from (3) by a mathematical process [1]. The new model (5) is synthesized in such a
way that it does not have the complexity originally found in (3) which made (3) diffi-
cult. The new model (5) also approximates (3) in some sense, where the Leff mapping
is an "effective" version of the L of (4) and where u0 is an effective version of the u
of (2) and (3). In most cases it is desirable that (1) be preserved as part of (5) so that
one synthesizes [2]

Aqo =f (6)

and

q0 = EeffUO (7)

from (1) and (2), with

Leff =Aeff. (8)

The q0 and Leff are "effective" versions of the q and 1, respectively, of (1) and (2).
In this case the model reduction process becomes a synthesis of effective constitutive
relations for the particular material in question. The model reduction process special-
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izes to an homogenization, or smoothing, process in the common case of a system
composed of a heterogeneous material, such as a composite, for which I is spatially
rapidly-fluctuating and Xeff is spatially constant or slowly-varying.

The model reduction process of [2] is based on the idea of producing a l-eff
for which the predicted responses u0 and q0 of (6) and (7) are filtered versions, re-
spectively, of the predicted responses u and q of (1) and (2). Specific filters are cho-
sen for a given problem by the person applying the model reduction process so as to
suit his information needs concerning responses of the system over some given range
of stimulii. Taking PL and P. as the mappings which act as the chosen filters for u
and q, respectively, means that

u0= PLU (9)

and

q= P(q" (10)

The PL and P0 mappings are idempotent, so that PLPL = PL and similarly for P,.
In addition, compatibility [2] between PL and P. means that they should commute
(with respect to mapping composition). At its most abstract level the general model
reduction process [2] is basically a search for a "solution" mapping Q to algebraic
(with respect to mapping composition) equations of mappings given by

AY.QPL = APOXY2 PL (11)

and by

PLQPL = PL (12)

Obtaining the Q mapping which satisfies (11) and (12) simultaneously constitutes the
bulk of the work in applying any model reduction process to a given model. Once
found, the solution mapping Q can be used to construct IXeff by

leff-- P0' PL (13)

The Q mapping can also be used to "reconstruct" the solution u to (1) and (2) from
the solution u0 to (6) and (7) by

u = UPLUO (14)

(probably) to within an accuracy comparable to that of u0 and to that with which Q
satisfies (11). (The Q can usually be made to satisfy (12) exactly.)
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In general, there is no universal, systematic way known to the author to directly
solve (11) for the unknown mapping Q. This difficulty suggests an approach which
translates the problem of finding Q into one that is more familiar and for which sys-
tematic means of solution are available. The group-homomorphic theory of model re-
duction is developed in this paper with this purpose in mind. The polynomial-basis [10]
and matrix-representation model reduction methods discussed in this paper can be most
economically understood within the common setting of the group-homomorphic theo-
ry. The basic idea of the group-homomorphic theory is to make the search for the Q
solution to (11) correspond to the search for a solution to governing equations of a kind
with which engineers and scientists are more familiar, such as boundary value prob-
lems. In other words, for a given A, 1, PL, and P,, one would like fixed, known set
G, f* E G, mapping L*: G -* G, and Q: G -+ H, where H = {set of possible
mapping "candidates" for solving (11)1, such that 0 (J3),for some P E G, satisfies
(11) as the solution precisely whenever f3 satisfies

L*3 =t*. (15)

The search for Q then reduces to the search for solutions P to (15). The idea is to de-
sign the scenario such that (15) is something for which systematic solution techniques
are available, such as for boundary value problems.

DISCUSSION

An axiomatic approach to the group-homomorphic theory of model reduction
is taken since it is a flexible scheme under which new model reduction methods might
suggest themselves and under which some current methods can be unified. It is based
on the following set of definitions and axioms:

1. G is an abelian group.

2. (D is a homomorphism which maps elements of G into an abelian group
of mappings H so that D (P) E H for each 0 E G. As a homomor-
phism, (D preserves the group operation of G so that
(D(c+ P) = 4(cc) +D(P) foreach aE G andeach P E G.

3. W is a nonempty set of mappings for which a TG: G -- G mapping ex-
ists for each T E W such that TO (f) = D (TG P) is true for all
P~EG.

The above collection of G, H, 0, and W will be referred to as a group-homomorphic
structure. For each group G and H in the structure, the binary group operation will be
denoted by addition, the inverse by negation, and the group identity by zero, with con-
text distinguishing between the groups. (An abelian group is one for which the group
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elements commute with respect to the group binary operation. Also,
D (-P) = -(D (P) for all P E G and D (0) = 0 both follow [11] from the sec-

ond axiom. Some rigor has been sacrificed in the above definitions, such as precise-
ness concerning the ranges and domains involved, but too much formalism at this
point might obscure the main ideas involved.)

For a given A, 1, PL, and P(, of (1), (2), (9), and (10) respectively, a model
reduction method can be constructed from a given group-homomorphic structure,
such that the problem of solving (11) reduces to that of solving (15), under the condi-
tions:

1. The mappings A, 1, PL, and P, are each elements of W.

2. A fixed R E G is known such that D (i) PL = PL and HI = ,
where f is defined as 1H = (PL) G so that PLO(1() = (I)
for each P E G.

3. To be consistent with the idempotent property of PL and P, and the
fact that they must commute, the associated mappings H and F must
be idempotent and commute, where F is defined as F = (P0 ) G so
that POO (P3) = 0 (Fr3) foreach e E G, and hence

2H2 H, I 2 = F, andF- = HF.

4. The mapping H is also a homomorphism so that
H(a+p) = Ha+Hp.

With the candidate Q mappings defined, as a function of P E G, by

S(P) = D (g + [I - H] P) (16)

equation (12) is automatically satisfied. This can be seen by

PL'2 (0•) PL = PL4) (9t + [I - II] 10) PL

=D J1I{g+ I -r P m)P
= b(IIH+{Pi [I-n] P )PL

= D(g +O)PL = D(g.)PL =PL L

where rH [I - H-] = H - H-I2 = HI - Hi = 0 has been used. Substituting (16) into
each side of (11) leads to
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AMiPL = 4) (AoGIGig+ [I-n] PI})P L

and

APoMg'PL = 0I (A GflyGi{g+ [I - l'PI}) PL"

Equation (11) is hence satisfied by

D(AGIG{It+ [I-H]f3}) = D(AGFrG{It+ [I-H]}),

which is equivalent to

0 = 0P (A G IG {+ [I- n-] •}-A GFryG {Ig+ [u- nI- pl})

because, by postulate, (I) is a homomorphism and H, the range of (I), is an abelian
group. The mapping 0 in the above relation is the zero element of H and the ei and
f are defined by

L* = AGXG [IE-H] -AGFZG [I-Y l] (17)

and

f = AGFEGg -AGXG9 . (18)

Equation (11) is hence satisfied if P satisfies (15) for L* and f as defined by (17) and
(18). Equation (16) and the solution P• to (15) can then be substituted into (13) to give

Eeff = (FD G ( Gig+ [- ]P})PL (19)

as the effective constitutive mapping for this model reduction scheme.

The group-homomorphic theory is the underlying mathematical framework for
operator-polynomial methods of model reduction [12], from which the multiple scales
homogenization method can be obtained [12]. It also forms a convenient structure for
organizing symbolic programming implementations of model reduction methods [ 12].
The focus of this paper, however, is on variable basis model reduction methods, from
which the polynomial-basis and matrix-representation model reduction methods can be
obtained. The variable basis methods will be constructed in terms of the above group-
homomorphic theory. This requires some definitions with which to build the appropri-
ate underlying group-homomorphic structure.
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For a given abstract vector space V and a given (fixed) positive integer N, the
group-homomorphic structure associated with the variable basis methods consists of
the following sequence of definitions:

1. Define S to be the scalar field associated with the vector space V.

2. Define V ( = {all linear functionals: V -- S }. (The V* is called the al-
gebraic dual space associated with the vector space V.)

3. Define P3 * y, TT, and 11-1 as notational shorthand for the matrix mul-
tiplication of P3 and y, the transpose of y, and the inverse of (square) ri,
respectively, for any given matrices f0, y, and (square) 11.

4. Define (x, y) as notational shorthand for the M by K matrix
{xi (y) },with (i, j), component formed by mapping y . into

xi (y,), for any y E V' and any ordered set x of M mappings, each of
whose domain is V, for some positive integers M and K. (The values
of M and K will vary according to the x and y input to (x, y).)

5. Define G by G = VN, so that, for any given P E G, P is an ordered
set of N elements of V. (Each element of G is to be viewed as a single-
row matrix.)

6. Choose fixed, known 6 E VN so that (•, jt) is a matrix of constant

scalars for any gi V'E and positive integer K.

7. Define 0 by

(20)

for all P3 E G for each f EO for some positive integer M. (The value
of M may vary according to the f input. Note that (D ( P)f is an ele-
ment of { span of components of 3 } M and so each P3 whose compo-
nents form a linearly independent set is a basis for each of the
components of the range of ) (13), hence the name "variable basis"
method.)

8. Define W as the set of all mappings T such that

Tf- 0 ,o f) (21)

is well defined for some X E VK, some positive integer K, and some
ordered set IV of K linear mappings, each of whose domain is V, and
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where fe VE for some positive integer M. (The values of M and K
will vary according to the particular X and XV used and according to the
f input.)

Bydefinition any vector space is an abelian group with respect to vector addition. Since
V' is a vector space if V is a vector space then G is an abelian group. It is readily seen
that (D (ax + D) = ( (a) + (D (P3) so that (D is a homomorphism. It is also readily
seen that

"I ij) + "l (gj)}

1-" { (fj) I +" {I (gj)}

= (*,f+ * 9g)

because of the linearity of each of the components of 0. This relation, along with the
distributive property of matrix multiplication, implies that (D (P3) is a linear mapping
(and hence a homomorphism) for each P3 E G. In an appendix it is shown that, for any
TE W,

T(aey) = (Ta)ey (22)

is true for all a VK and all K by J matrices y of constant scalar components for any
given choice of positive integers K and J. This leads to

TO (P)f = T (Pe (ýJ,))

=TP * (0,j)
= D (TP)f

for any T E W, with W defined by 8 above and (D by (20), upon using the choice

7 = (0, P

in (22), for which ly consists of constant scalar components for any given f. The W set
of this group-homomorphic structure hence consists of elements T such that

TO (P) = D (TP) (23)

for all P r= G, so that

TG = T

for this particular group-homomorphic structure. The result
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(D(P) E W (24)

for each PE G follows from taking the choices

in (21). Relations (23) and (24) imply

4D (a) (D (P) D (ID (a) P) (25)

for all aE G and P E G.

One can build idempotent mappings from () for potential use as PL and P(,
candidates. For any fixed Ei e G for which (ý, g.) is nonsingular one has

4)(Die , 4I)- (,)-I = [4D (g. (4,, t)-l) g] . (4, t)-1

S[ji * (4, ji)-I• (4, 0t)] 0 (4, 0 ±)-

by using

Y= (4,i),

in (22) and (24) and by (20). This can be summarized by

(D (g') g' = g'
gi'=p.. (0pp--1  (26)

The mapping () (gt') is idempotent, as can be seen by combining (26) and (25), with
a = = p,',toget

S= ) ( (') . ')(27)

The above group-homomorphic structure can be built into a model reduction
method for any problem (1) and (2) for which
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AEW
XeW

and for which the projector choice

PL = (Dt g• I)7l) (28)

is taken for some fixed g. e G so that 0 (gI') PL = PL from (26) and (27). The
choice (28) implies

HI = (D ( (gg, I-) (29)

because of (25), so that HIt' = g.' and I2 = Hl from (26) and (27). There is still a
lot of freedom remaining in (28) since one is still free to choose the p. and ý. The model
reduction method based on (28), (29), and

P- PL,

which implies

F=Hr

because of (25) and (29), is always available. Other P. choices, however, such as

Por =-(D()

for fixed 1) E G, which in turn implies

F =- (1)1)

may be useful, assuming that FH = HF is satisfied for the particular choice of 1).

The special case for which V is a Hilbert space offers certain simplifications.
For a given (bounded) linear functional AV on a Hilbert space V, with inner product
(ctP) for any a c V and P3 E V, the most general form for 4f, by Riesz's theorem
[13], is V (J) = (f,a) for an a e V uniquely determined by V. The 0 -'s (compo-
nents of 0 from definition 6) then have the form Oi (f) = (fzi) for each i, with each
zi uniquely determined by Oi. The special case for which z = gt in (28) makes PL
into a Mori-Zwanzig type of projector used extensively in model reduction in nonequi-
librium statistical mechanics and described in [9] for example. The most convenient
choice for p. in such a case is one whose (orthonormal) components satisfy
(i'. 't) = Si., where 8 is the Kronecker delta with components 1 for i = land 0 oth-
erwise.

52



The polynomial-basis model reduction method [10] consists of a variable ba-
sis method using (20), (28), and (29) for which the components of R are polynomials
and the components of 0 are (except for the first) averages of derivatives. As an ex-
ample, the specific case of first order polynomials 1, x1 = x, x2 = y, and X3 = z
in a cartesian coordinate system was used [10] to homogenize the problem of steady
heat conduction in an isotropic, heterogeneous material which obeys Fick's law of
heat diffusion. In this case the 0 and gt specialize to

I for j= 1

an POdxi for j =2,3,4
and aj

F 1 forj= 1.lj= (I -- PO) xj_- 1 for j= 2,3,4

where I is the identity operator and P0 is a linear, idempotent functional for which
P0 (1) = 1. (The simplest physically meaningful P0 is a volume average.) The pro-
jector choice

PG =f •() = (D (Po,

11 = {1,0,0,0}

was used so as to produce constant effective thermal conductivities for an equivalent
(anisotropic) homogeneous material. In specializing to the periodic medium case the
same bulk properties are synthesized [10] as that from the method of multiple scales.
The commutation requirement

FLI = -IF = F

is satisfied because of

F~t =1

for this case, where 8 is the identity matrix.

The matrix-representation model reduction method is also a variable basis
method for which the basis is constrained to the same subspace for all cases. The ho-
momorphism

TI (a) = 4( (4,gy- .a) , (30)
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for (D from (20), is more convenient in this case than (D itself. The gt r G in (30) is
fixed and the a, an N by N matrix of constant scalars, is allowed to vary. The compo-
nents of

in (30) are hence each constrained to the subspace (of V) formed by the span of the
components of gt. The new homomorphism given by (30) has the two important prop-
erties

T (a)'P([) = TP(a.J3) , (31)

for any two N by N matrices a and 03 of constant scalar components, and

PTP = T (tr)
S=(0, Tit) •(ý, gt)-1 (32)

P= (D (g o((•),p-')

for any T E W, using the same gt and 0 as in (30). Equation (31) is proven by

TI (a) TI ()) = [D (g * (0, g)-' a) D (gt* (, g)-1 )

= (D (ID (g * •,) 1 9 a) [g] 9 g_, o 0] )

= o([o(Dgo g7' ot-loa)(g] o [(gpt)-'.f])
= ([D t (gt)- oao g)]. [ gI)-7' ]

= ID(gt (0, g- o ao)

T P(a.)

and (32) by

PTP =PTO (pt (g , gtý)
= D (gt o (ý, g)-l) ID (T (itg o(D gýt)-1

= (D ((D (g o (ý, gt)-) [ (T(t) )]

= (D( [(D(gt (0, g)-') (Tgi)] (, gt) 1])

•D - (gt o ((, gt)71 o (0), Tt)• g• I)-')
= T(p ( ((0, Ti)) ( (), g i-) )
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The N by N matrices of constant scalar components (algebraically) form a ring, call
it G', with respect to matrix addition and multiplication. Equation (31) and

T J(a --+ = (D (gt 9 (,it)-I * [0a-+-P])

=(D) ( [gt g ),t-I 9 al] + [gt * <(, It-I• ]

= ( ot) 1  a) + (D

= (a) +

establish P as a homomorphism over the ring G'. (This method is hence ring-homo-
morphic as well as group-homomorphic.)

The projector P of (32) maps onto the subspace formed by the span of the
components of gt. The projector 0, defined by 0 (T) = PTP for P of (32),
projects each T E W into an operator under which this subspace is invariant. The T

of (32) can be thought of as a matrix representation [13, p. 113] of the corresponding
T (of W) with respect to the basis consisting of the components of gi. In addition,
equation (31) shows that mapping composition corresponds to multiplication of the
corresponding matrices. The matrix representation 't of T reduces to { (T[i ,.) I for
the special case of a Hilbert space upon the use of Riesz's theorem (as mentioned ear-
lier) and orthonormal components for g.

If the subspace onto which P of (32) projects is "large enough", so that PTP
is an adequate approximation to T for each T E W of interest, then a matrix-repre-
sentation model reduction method, with T of (30) playing the role of (D and G' play-
ing the role of G in the group-homomorphic setting, is feasible. An important

example consists of

PL = Pa = (7c)

with the fixed matrix 7C playing the role of g., and

(I - PL) L'2PL = 0 (33)

as the replacement for (11) for the case, assumed here, for which the complete system
mapping L of (3) is not to be subdivided into A and I. Equation (33) is equivalent to
the artifice of taking A -- I and E -- L in (11). The importance of this example
stems from the fact that

u (P)PL = T (W)

Q'=7L+ [8-I] o9,9I,
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which makes W', as opposed to P3, the unkown, to-be-determined matrix, leads to

[8-7t] .L'.o ' = 0

as the matrix analogue to (33), where L' is the matrix representation of L in the sense
of (32) with PLP = L. This reformulation of the matrix-representation model reduc-
tion problem into a discrete model reduction problem allows one to utilize a known sys-
tematic approach [1] to such problems.
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APPENDIX

ProofofT( oy) = (TO) .7

Let Nf have only a single component. For any single-row matrices y and P of
equal length

(N, (0I)) = (P07) = (0, P)o (Al)

is a statement of the linearity of V' for y of constant scalar components only. This can
be extended to multi-rowed y's of constant scalar components by

= (y', { [j3. (column 1 of y)], [[3 (column 2 ofy)], ... })

= { '(Po (column 1 of y)), V1 (J3° (column 2 ofy)) ...y } (A2)

-{ [(o, P) (column 1 of y)], [(xP)o (column 2 ofy)], ... }

where (Al) has been used for each column of y. This, in turn, can be extended to
multi-component IV's by

= Y) (vi, (P ' Y
= {(Xvi, P)} (A3)

= (v, P1.•,

where (A2) has been used for each component of Nf. Pre-matrix-multiplying (A3) by
X produces (22) upon using (21).
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TIME RATES OF GENERALIZED STRAIN TENSORS
WITH APPLICATIONS TO ELASTICITY

Mike Scheidler

US Army Ballistic Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

1 Introduction

Consider a smooth motion with deformation gradient F. Since det F > 0, F has two
unique polar decompositions

F = RU = VR, (1.1)

in which R, the rotation tensor, is proper orthogonal, and U and V, the right and
left stretch tensors, are symmetric positive-definite; cf. [1-6]. The stretch tensors have
spectral decompositions

3 3

U=EAiui®ui and V=EAivi vi, (1.2)
i=1 i=1

where the principal stretches Ai are the principal values of U and V. The principal
directions ui of U are called the principal axes of strain in the reference configuration
or the Lagrangian triad; the principal directions vi = Rui of V are called the principal
axes of strain in the current configuration or the Eulerian triad. The numbers Ai - 1
are scalar measures of strain in the principal directions. If I denotes the identity tensor,
then U - I and V - I may be interpreted as strain tensors.

For finite deformations, various other scalar and corresponding tensor strain mea-
sures have been proposed; cf. Truesdell and Toupin[1, §31-33A]. Here we focus on a
general class of strain measures introduced by Hill[6-8]. Hill takes as a scalar strain
measure any sufficiently smooth function f defined on the positive reals with the prop-
erties

f(1)=0, f'(1)=I, f'>O. (1.3)

Corresponding to the scalar strain measure f is a Lagrangian strain tensor

3
f (U)- f f(A) ui ® ui (1.4)

i=1

and an Eulerian strain tensor

3

f(V)- f(Ai)vi ® vi. (1.5)
i=1
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Their principal directions are the Lagrangian and Eulerian triads, respectively, and
their principal values are the numbers f(Ai). By (1.3), f(Aj) is a strictly increasing
function of Ai which differs from Ai - 1 by a term of order (Ai - 1)2:

f (Ai) = Aj - 1 + 0 ((A, _ 1)2) . (1.6)

It follows that f(V), for example, is an invertible function of V which differs from V-I
by a term of order I1V - 1112:

f(V) = V- I + O(IlV- 1112) . (1.7)

Some traditional strain measures included in (1.3) are f(A) = In A and

f(A) = Lf() -n 1n(- - 1), (1.8)
n

where n is some nonzero integer. For example, by taking n = 1 in (1.8) we recover the
strain tensors U - I and V - I. The Lagrangian strain tensor corresponding to the
choice n = 2 in (1.8) is the Green-St. Venant strain tensor

f 2 (U) I(C - I), (1.9)

where
C =U 2 = FTF (1.10)

is the right Cauchy-Green tensor. The Eulerian strain tensor corresponding to the
choice n = -2 in (1.8) is the Almansi-Hamel strain tensor

f-2(V) (I - B-'), (1.11)

where
B = V 2 •= FFT (1.12)

is the left Cauchy-Green tensor.
Hill's class of generalized strain tensors has found important applications in the

formulation of constitutive equations and constitutive inequalities for elastic and plastic
material response; cf. Hill[6-9], Wang and Truesdell[3], Ogden[5], Havner[10], Nemat-
Nasser[11,12], Guo and Dubey[13]. In these applications it is useful to express the
time-rate of change of a strain tensor in terms of the stretching and spin tensors D
and W, which are the symmetric and skew parts of the velocity gradient. For some
choices of f, expressions for the time-rate of change of f(U) and f(V) follow easily
from well-known formulas for the material time derivative of C and B. For example,
the material time derivative of the Green-St. Venant strain tensor f2 (U) is [1, §95]

f 2(U)" = FTDF = U(RTDR)U. (1.13)

The material time derivative of the Almansi-Hamel strain tensor f-2(V) is

f-2(V)" = 1 (B-'D + DB-1 + B-W - WB-1); (1.14)2
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this can also be written as [1, §95]

f 2(V) = D - L2(V) D - D f_2(V), (1.15)

where
A _ AL + AW - WA (1.16)

is the Jaumann rate of a tensor field A.
Formulas of the type (1.13)-(1.15), which are written in direct tensor notation, will

be referred to as direct formulas for the time-rates. For a general strain measure f,
direct formulas for f(U)" and f(V)" or f(V)° are much more difficult to derive and also
much more complicated than (1.13)-(1.15). On the other hand, Hi11[6,7] found a simple
formula for the components of f(U)" relative to the Lagrangian triad. Hill's component
formula and its analogue for f(V)' are discussed in Section 2. In Section 3 we indicate
how these component formulas can be used to derive approximate direct formulas for
f(U)" and f(V)' as well as bounds for the error in the approximations. We then apply
the general results to the logarithmic strain tensors In U and In V, which are obtained
by setting f = In in (1.4) and (1.5). In Section 4 we use the approximate formula for
(ln V)0 to derive an approximate formula for the rate of the deviatoric stress tensor in
an isotropic elastic material. These approximate formulas provide good estimates when
the shear strain is small, with no restrictions on the volumetric strain. In Section 5 we
indicate how the component formulas for f(U)' and f(V)° can be used to derive exact
direct formulas for these rates analogous to the formulas obtained by Hoger[14] for the
case f = ln.

2 Component Formulas

Hi11[6,7] derived the following simple formula for the material time derivative of the
Lagrangian strain tensor f(U):

3

f(U)'= E Lf(Ai,Aj) Dij ui S uj, (2.1)
ij=

1

where

Lf(Ai,Aj) Aif'(Ai) if Ai = j
= 2Ajij f(A) -f(,j) if Ai : Aj . (2.2)

Ai +Aj A - Aj

Dij are the components of the stretching tensor D relative to the Eulerian triad, or
the components of the rotated stretching tensor RTDR relative to the Lagrangian
triad. Observe that the term Lf(A, Aj) Dj in (2.1) is the ij-component of f(U)"
relative to the Lagrangian triad. It turns out that the derivation of (2.1)-(2.2) given
by Hi11[6,7] is rigorous only for those instants at which the principal stretches are
distinct. As described in detail in Scheidler[15], there are problems with the "limiting
process" proposed by Hill for obtaining (2.2) when i :A j and Ai = Aj. In discussing
Hill's formula, subsequent authors have either repeated Hill's argument [13] or simply
considered the case of distinct principal stretches only [5,10,11,12].
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There is an equally simple analogue of (2.1)-(2.2) for the Jaumann rate of f(V):

3
f (V)° = : Ef E(Ai, ,Aj) Dij vi 0 vj ,(2.3)

i,j=1

where

Ef (Ai, Aj) Ai f(Ai) if Ai =,•j

"Ai + Aj f(A) - f(Aj) if A, Aj . (2.4)

Observe that the term E(,(Ai, Aj) Dij in (2.3) is the ij-component of f(V)' relative to
the Eulerian triad. Hill[6-9] did not derive formulas for the time-rates of Eulerian strain
tensors. For the case of distinct principal stretches a result equivalent to (2.1)-(2.2)
was obtained by Nemat-Nasser[11,12] using Hill's methods.

In a recent paper [15], I showed that the above formulas hold for any C2 motion
and any C' strain measure f, regardless of whether or not the principal stretches are
distinct. The proof utilizes a component formula for the derivative of an isotropic tensor
function due to Bowen and Wang[16] and Chadwick and Ogden[17],' together with a
theorem due to Ball[18] which is used to establish the sufficiency of the aforementioned
smoothness conditions.

3 Approximate Direct Formulas

The component formulas presented in the previous section can be used to derive ap-
proximate direct formulas for the time-rates of generalized strain tensors. An example
of such a formula is

f(V), = -x 2 f"(x) D + (x) + xf"(x) (DV + VD) + V(EY) (3.1)2

Here x can be any positive number, and -x is the largest of the distances from x to the
three principal stretches:

Ex = max IJAj- xL. (3.2)i=1,2,3

By neglecting the remainder term O(e, 2) in (3.1), we obtain an approximate formula for
f(V)°. As the notation indicates, this remainder term is of order EX2, i.e., IjO(_= 2)fl/e1

2

remains bounded as -x - 0. While this limiting behavior is of theoretical interest, it
is of little practical use since it provides no information on the size of the remainder
term for a given (nonzero) value of E,. What is needed is an explicit bound on the
remainder term in (3.1). It can be shown that

110(e 2)1_ ID [ [113a1 +PWin)/2 -W + 6max nmaxlf.'"I =2 (3.3)

for any x > 0. Here Ai, and Ama, are the minimum and maximum values of the
principal stretches; 6 = 1/2 if fill has constant sign and 6 = 1 otherwise; maxlf"I

'Cf. also Wang and Truesdell[3, §6.4] and Ogden[5, §6.1.4].
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is the maximum value of If."I over the smallest interval containg x and the principal
stretches. To derive (3.1)-(3.3) and the results below, we use the component formula
(2.3)-(2.4), Taylor's formula applied to f' with Lagrange's form of the remainder, and
a variation of the Taylor-Lagrange formula due to Hummel and Seebeck[19]. Details
can be found in Scheidler[20]. The error bound (3.3), which is new, is sharper than the
corresponding bound in [20]. The derivation of (3.3) is similar to the derivation in [20]
but requires a bit more work; details will be reported in a forthcoming paper [21]. It
is also worth noting that the derivation of the bounds in [20] utilized the assumption
that e., < x; for some choices of x this places restrictions on the motion. The new
bound (3.3) holds for any C2 motion and any C' strain measure f.

As mentioned above, we are free to choose the parameter x in (3.1). The simplest
choice is x = 1, in which case E_ is just the maximum of the absolute values of the
principal strains Ai - 1. Of course, better approximations will generally be obtained
by choosing x to lie between Amin and Aa,. It is easily shown that

I(Amax - Amin) !_ c. < Amax - Amin , if Amin < x < Amax. (3.4)

Since (Amax - Ami,)/2 can be interpreted as the maximum shear strain, (3.4) states

that e, is bounded below by the maximum shear strain and bounded above by twice
the maximum shear strain, provided that x lies between the minimum and maximum
principal stretches. Then regardless of the volumetric strain, (3.1) yields a good ap-
proximation to f(V)' if the maximum shear strain is sufficiently small. The best
choice for x in (3.1) will depend on the particular application of the approximate for-
mula. We mention three reasonable choices for x, all of which satisfy the condition
Amin • x < Amax. First, we could take x to be the arithmetic mean of the principal
stretches:

1 1 1Vx= I(Ai+A 2 +A 3 )= 1trU= 1trV. (3.5)
3 3 3

Second, we could take x to be the volumetric stretch, which is defined as the geometric
mean of the principal stretches:

x = (AlA2)3)1/3 = (det U) 1/ 3 = (det V)1/ 3 = (det F)1/"3 = 13 (3.6)

where Po and p are the densities in the reference and current configurations, respectively.
Finally, we could take

x = minE- =(Amax + Amin), (3.7)
x>O

in which case Cx = (Amax - Amin)/ 2 is the maximum shear strain.
Since the left stretch tensor V = (FFT)1/ 2 is an irrational function of the defor-

mation gradient F, a formula analogous to (3.1), but with V on the right-hand side
replaced with B = FFT, may be more useful for computational purposes. The result
is

fV = x f'(X) - x 2f~l WD +[f'(x) + L(L)] (DB3 + 131) + 0(,_X2 ) . (3.8)

The bound (3.3) does not apply to the remainder term in (3.8), but a similar bound can
be obtained [21]. By utilizing Hill's component formula (2.1)-(2.2), analogous results
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can be obtained for f(U). Indeed, (3.1) and (3.8) remain valid under the replacements
f(V)° -* f(U)', D -- RTDR, V - U and B -* C. Of course, the remainder terms
are different in this case, but they satisfy the same bounds as before [20,21].

Now consider the logarithmic strain tensors. For f In, (3.1) and (3.8) reduce to

(ln V)° = D + O(Ex2) (3.9)

Furthermore, in this case we have the following simple bound for the remainder term
in (3.9):

IIo(e: 2)Il _<[[DJ 'a- Am- - 1 . (3.10)

4 Amm k Amin

This follows from (3.3) by setting f = In and choosing x as in (3.7). Similarly,

(ln U)' = RTDR+ 0(_e2 ), (3.11)

where the remainder term in (3.11) also satisfies (3.10). Observe that Amax/Amin, and
thus the bound (3.10), is independent of the dilatational part of the deformation. Also
note that since

Amax 1 2 Amax - Amin(3.12)
Amin Amin 2

Amaxr/Amin - 1 is a measure of shear strain which is independent of the dilatational
part of the deformation. By means of his component formula, Hill[6,7] showed (at
least for distinct principal stretches) that (ln U)" differs from RTDR by a term whose
components are of order (Ai/Aj - 1)2, and he observed that this remainder term is inde-
pendent of the dilatational part of the deformation. Using a different method, Gurtin
and Spear[22] proved that for a family of motions depending on a small parameter e,

(lnV)0=D+0(c 3 ) if F-I=O(e) & t=:0(). (3.13)

We can easily recover this result from (3.9) and (3.10); cf. [20]. Neither Hill nor Gurtin
and Spear obtained bounds for the remainder terms in their approximate formulas.

4 Approximate Rate Equation for Isotropic Elasticity

Isotropic solids such as polycrystalline metals and ceramics exhibit elastic response
only for small shear strains. Under the assumption that the shear strains are within
this elastic range, we will give a rigorous derivation of an approximate rate equation
for the deviatoric stress tensor. The assumption of small shear strains is often seen as
justification for invoking the linear theory of elasticity, in which

T. = 2PoE. . (4.1)

Here T denotes the Cauchy stress tensor, the constant po is the shear modulus, E is
the infinitesimal strain tensor, and an asterisk subscript denotes the deviatoric part
of a tensor. For terminal ballistics applications the linear theory is invalid for two
reasons. First, material rotations may be large, in which case the linear theory fails to
be properly invariant. Second, the high pressures generate large compressive volume
changes, and it is known (see below) that large volumetric strains can influence the
deviatoric stress.
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A properly invariant consitutive equation for the deviatoric stress can be obtained
simply by replacing E. in (4.1) with the deviatoric part of any Eulerian strain tensor:

T. = 2pi0f(V). = 2pitV. + o(llv - J112) , (4.2)

where the equation on the right follows from (1.7). Thus, to within terms of order
ivg- Ill 2 , the constitutive equation (4.2), is insensitive to the choice of the strain

measure f. Note, however, that 11V - 1112 is small iff both the shear strains and the
volumetric strains are small. For large volume changes, the constitutive equation (4.2),
is sensitive to the choice of the strain measure; in other words, different strain measures
will yield different deviatoric stress/volumetric strain effects. Thus for a given material,
use of (4.2), would require the determination of an appropriate strain measure f. We
will take a different approach below.

For finite deformations, the shear modulus p of an isotropic elastic material is
commonly defined as follows. Let Cs(p) denote the shear wave speed in the material
when it is under hydrostatic compression at density p, so that T = -pI, where p is the
pressure, and A1 = A2 = A3 = (Po/p)11 3 . Then

i/_ = p(p) = P(P) - PCs(P) 2 . (4.3)

If po p(po , then the shear wave speed in the undeformed material is given by
cs(p.) Po/Po, in agreement with the linear theory. For sufficiently low pressures
(; 1GPa or less), cs(p) is typically obtained from ultrasonic measurements with the
pressure generated in a piston-cylinder apparatus. Such experiments reveal that c5,
and hence p, increases with density, or equivalently, with pressure; indeed, for many
solids Op/Opjp=o lies between 1/3 and 3 [23,24]. Direct measurements of the shear wave
speed are difficult to obtain at high pressures. For metals and ceramics, Steinberg et
al. [24,25] have proposed the following constitutive relation 2 for p:

-t =zp.o+ ap L ,1/ (4.4)

where the constant a = Oip/Opjp=o. The relation (4.4) is based on theoretical calcula-
tions. For pressure-density relations appropriate to metals and ceramics, (4.4) implies
that p increases with p, whereas Oip/Op decreases with p. Steinberg et al. [24,25,26]
have found that (4.4) yields results consistent with wave profiles from plate impact
experiments. For example, for 6061-T6 aluminum at a pressure of 41 GPa, (4.4) pre-
dicts that the shear modulus increases by a factor of 3 and that the shear wave speed
increases by a factor of 3/2. Steinberg et al. [24,26] found that calculations based on
(4.4) correctly predicted the arrival time of elastic release waves in Al shock-loaded to
41 GPa, and that the calculated elastic release arrived much too late when the pressure
dependence of p was reduced by 75%.

Any class of constitutive relations intended for high pressure applications should
be general enough to accommodate any physically reasonable shear modulus function
p = p(p). One such class is given by (4.7) below. The analysis is based on the following

2
They also include a linear temperature dependence. They find that the temperature term is

typically on the order of 10% of the pressure term in shock-wave experiments.
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formulas for p, which are valid for any isotropic elastic material: 3

A ,(P ) A j r a t a r,
ý A, 3 - ýAtj ) IA1=A2=A3=(PO)/P)1/ 3

Ai 9ti- LtL) 1 (4.5)
2 0Aj~ O Aj =A2=A,3=(Po/pl)1/3

for any distinct i,j E {1,2,3}. Here ii and t7 are the principal stresses and the
principal deviatoric stresses, respectively. In particular, from (4.5)2 it follows that the
shear modulus is completely determined by the deviatoric response of the material. On
the other hand, there are infinitely many constitutive relations for T* which yield the
same shear modulus. With the aid of (4.5) it may be shown that [21]

T, = 2p(p)(ln V), + (9 A 1 (4.6)

for any isotropic elastic material with shear modulus p p ft(p). It follows that two
isotropic elastic materials have the same shear modulus iff the deviatoric stress in
these materials differs by a term of order (Ama•x/A .. - 1)2. In particular, for a given
function p the constitutive relation

T -= 2p(p)(lnV), (4.7)

has the following properties:

1. This relation defines a material whose deviatoric response is isotropic elastic with
shear modulus p = p(p).

2. For any other isotropic elastic material with shear modulus = p(p), the devia-
toric stress differs from (4.7) by a term of order (Amax/Am.,n - 1)2.

The component form of (4.7) is

t* = -2(2 In Ai - lnAj - lnAk), (4.8)
3

for any permutation (ijk) of (123). Then from (4.5)2 it is easily verified that the shear
modulus for such a material is indeed equal to p. It is interesting to note that the
properties 1 and 2 above fail to hold if In V in (4.7) is replaced by any other Eulerian
strain tensor f(V), or equivalently, if the logarithm function in (4.8) is replaced by any
other scalar strain measure f. This can be verified with the aid of (4.5)2.

For the remainder of this section we focus on the constitutive relation (4.7). On
taking the Jaumann rate of (4.7), we obtain

T' 2p (In V)' + 2ý (in V).

2p(InV)' + T W, (4.9)
P

3 Cf. [3, (5.25)], where an equation equivalent to (4.5)1, but in terms of the squares of the principal
stretches, is derived for acceleration waves. As discussed in [2, §73], acceleration waves obey the same
laws of propagation as infinitesimal plane waves.
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where the second equation follows by solving (4.7) for (In V).. Then from (4.9)2, (3.9)
and (3.10), it follows that

TO = 2uD. + -'T* + O(( Am - 1)2) , (4.10)

where an explicit bound for the remainder term is given by the expression on the right-
hand side of (3.10). Therefore, to within a term of order (Ama/Amin - 1)2 the material
time derivative of the deviatoric stress tensor is given by

!C, = 2/uD, + -T + WT, - TW. (4.11)

Alternate expressions for the term 15/li are

P_ 1 19 P Lp ( D P(-trD), (4.12)

P p ap Pa ( p pap

where
1=p (4.13)

is the bulk modulus. For many metals and ceramics, L 22 -. 1-10. In view of (4.12)2,3,

the right-hand side of (4.11) involves three different rates: D., a measure of distortional
strain rate ; -tr D, a measure of the rate of compression; and W, a measure of the
rate of rotation. In general these rates are independent, so that none of the terms in
(4.11) should be omitted.

From the above results we may draw the following conclusions. Within the elastic
range of an isotropic metal or ceramic with shear modulus p (as defined by (4.3)),
the constitutive relation (4.7) provides a good approximation to the deviatoric stress
T., and (4.11) provides a good approximation to the time-rate of change of T.; in
particular, these approximations are good regardless of the volumetric strain. Further-
more, for metals it is typically assumed that prior plastic deformation does not alter
the elastic properties of the material. Then regardless of the amount of prior plastic

deformation, the rate equation (4.11) is also valid during elastic unloading since the
terms in (4.11) do not involve the original reference configuration.

In most hydrocodes used for terminal ballistics simulations, the rate equation for
deviatoric elastic response is T. = 2poD. +WT. -T*W; cf. [27, §11.1]. Clearly, this
provides a good approximation only at low pressures or for materials with constant
shear modulus, conditions which typically are not satisfied in such applications. Stein-
berg and Lund[28, eq. (4)] use a rate equation for T, which reduces to T., = 2pD,.
when the response is elastic. While they account for the pressure dependence of p via

(4.4), their rate equation omits the other terms in (4.11). For the simulation of uniaxial

strain plate impact tests, the rate equation T, = 2pD, is probably sufficient, since in
this case W = 0 and the (P/p)T, term in (4.11) is much smaller than the 2pD, term.

5 Exact Direct Formulas

In this section we indicate how the component formulas for f(U)" and f(V)0 in Section 2
can be used to derive exact direct formulas for these rates. For brevity we focus on
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f(V)°, although a similar analysis applies to f(U)'. For more details we refer the reader
to the forthcoming paper [29]. Let A be any tensor coaxial with V and such that two
principal values of A are equal iff the corresponding principal values of V are equal.
By (1.2)2, these conditions are equivalent to

3

A = ai vi ® vi ai = aj iff Ai = Aj , (5.1)
i=1

where ai are the principal values of A. Then the Jaumann rate of f(V) can be expressed
in terms A and D as follows:

f(V) = 0122A 2DA 2 +a 2 1(A
2 DA + ADA 2 ) + a 2 0(A 2D +DA 2 )

a1 1ADA + alo(AD + DA) + a0 0D, (5.2)

where the coefficients amn depend on the strain measure f and the principal values of
A and V. Some useful choices for A are V, B, f(V), some other Eulerian strain tensor
(e.g., lnV), or the deviatoric part of any of these tensors. Regardless of the choice for
A, the coefficients an have the form

N

""mn ,',,(a,, a,, a3) Ef (Ai, Aj), (5.3)
i,1=l
i_<j

where N is the number of distinct principal stretches, Ef(Ai, Aj) is given by (2.4),
and , are rational functions whose form is independent of A; various expressions
for the J are given in [29]. If N = 2 we assume that A, 0 \2 = A3 ; in this case
& -22 = a2l =a0 = 0. If N = 1, i.e., if V = AI, then the only nonzero coefficient in
(5.2) is a0 0  Af'(A).

There are three key steps in the derivation of (5.2)-(5.3). The first step is to show
that (2.3) is equivalent to

N

f(V)° = 3 Ef(Ai, Aj) PiDPj , (5.4)
2,2=1

where Pi (i = 1, ... , N) is the ith eigenprojection of V, i.e., the perpendicular projec-
tion onto the eigenspace of V corresponding to the eigenvalue Ai. The second step is
to note that, in view of (5.1), A and V have the same eigenprojections. The third step
is to employ the explicit formulas for the eigenprojections of a symmetric tensor A; cf.
[30, §79]. For example, if N = 3 then

P A - a2 1 A - a 31 (5.5)

a,--a 2 a, -- a 3

with analogous formulas for P 2 and P 3 . If N = 2 then

P1- A-a 2 1 and P 2 - A-a 1 I (5.6)
a, - a2 a2 - a,

If N = 1 then P 1 = I. Substitution of these formulas for the eigenprojections into
(5.4) yields (5.2)-(5.3).
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For the rates of the logarithmic strain tensors, results of the type (5.2)-(5.3), with
A = V, were obtained by Hoger[14]. Hoger utilized her direct formula for (ln U)" to
obtain the first rigorous proof (for f = In) of Hill's component formula (2.1)-(2.2) when
the principal stretches are not distinct. In the derivation of her direct formulas, Hoger
utilizes results from Carlson and Hoger[31] and Hoger and Carlson[32]. The approach
outlined above appears to be more general and substantially simpler, and also yields
more compact expressions for the coefficients orm,.

6 Discussion

We have shown that the component formulas for the time-rates of generalized strain
tensors provide a useful tool for deriving direct formulas (either exact or approximate)
for these rates. In principle, one could also derive the approximate formulas in Sec-
tion 3 from the exact formulas in Section 5. However, for the case of distinct principal
stretches the complexity of the direct formulas makes such an approach impracticle.

Our formulas for the time-rate of change of Eulerian strain tensors have been ex-
pressed in terms of the Jaumann rate (1.16). Another corotational rate in common use
is the one obtained by replacing W with n = ARRT in (1.16). It can be shown [20,21]
that the approximate formulas (3.1), (3.8), (3.9) and (4.10) are valid for this corrota-
tional rate as well. The remainder terms in these formulas are different, of course, but
they satisfy the same bounds as before.
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1. Introduction

The macroscopic properties of a composite material depend in a

subtle way on the geometry of the microstructure. One way to explore

this dependence is through geometry-independent bounds on effective

moduli. Composites with extremal behavior are of special interest. They

arise naturally, from certain types of coherent phase transitions; and they

arise synthetically, in problems of structural optimization.

Recent mathematical activity has led to new methods for bound-

ing effective moduli and new classes of extremal microstructures. This

progress has been achieved over a period of years, through the combined

effort of many individuals. Here we survey selected aspects of this work.

2. Composite materials.

A composite is a mixture of distinct materials on a length scale small

compared to that on which the loads and boundary conditions vary, but

still large enough for continuum theory to apply. We consider exclusively

linear models of material response, e.g. thermal conductivity, electrical

resistivity, or linear elasticity. Material interfaces are considered to be

perfectly bonded; thus in the elastic setting the displacement and the

normal component of stress are continuous at material interfaces.
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The effective moduli of a composite describe its macroscopic behav-

ior. There is an extensive theory, in both the mechanics and mathe-

matics literatures; see e.g. [1-5]. It makes little difference whether the

microstructure is random, periodic, or of some other form. The effec-

tive conductivity a,, for example, relates the macroscopic (i.e. locally

averaged) current j to the voltage gradient Vq:

(j) = a. (Vq) . (2.1)

Similarly, the effective Hooke's law C, relates the macroscopic (locally

averaged) stress or to the strain e(u) = !-(Vu + VuT):

() = C.e(u)e . (2.2)

Here (.) represents averaging - over an ensemble if the composite is

random, over space if it is periodic, or interpreted via weak limits in a

more general mathematical context. The effective conductivity a,, is a

second-order tensor; the effective Hooke's law C. is a fourth-order tensor.

They can be anisotropic, even if the composite is made from isotropic

materials, due to anisotropy of the microstructure.

3. New methods for bounding effective moduli.

The recent mathematical progress has been facilitated by a number

of new methods for bounding effective moduli. One is a Fourier-space

version of the well-known Hashin-Shtrikman variational principle, e.g. [6-

10]. Another is the "translation method," which derives new variational

principles from classical ones by the subtraction of a null-Lagrangian (or,
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more generally, a quasiconvex quadratic form), e.g. [11-13]. A third uses

the fact that the effective moduli depend analytically on the component

properties, e.g. [14,15]. And a fourth uses linear fractional transforma-

tions to encode geometric information such as volume fractions into the

definition of the effective tensor, e.g. [16,17]. (These references represent

a mere sampling of the literature in each area.)

Much of the recent progress has focussed on bounds which are op-

timal. To show that a bound is optimal one must find a microstructure

that achieves it. So it is important to have a sufficiently large class of

microstructures with explicitly computable effective properties. This is

provided by the construction known as sequential lamination. Its basis

is the well-known fact that the effective moduli of a layered composite

are explicitly computable. It is natural to iterate this, layering together

materials which are themsevles composites. This idea goes back at least

to Bruggeman [18]. It was rediscovered by various individuals and ap-

plied to prove the optimality of many different bounds. Two particular

developments have been very important. One is an especially convenient

formula for expressing the effective moduli of a sequentially laminated

composite, introduced by Tartar for conductivity [11] and extended to

elasticity by Francfort and Murat [19]. The other is a method for search-

ing the class of sequentially laminated composites numerically to find a

microstructure that is extremal for some particular purpose [20].
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4. Examples of optimal bounds and extremal microstructures.

We now describe two specific successes of the theory.

4A. Mixtures of two elastic materials.

The following question arises naturally in structural optimization,

see e.g. [21-23]. Suppose we are given two elastic materials with Hooke's

laws A 1 and A 2 respectively. They are to be combined in specified volume

fractions 0, 1 - 0 to form a composite A,. How should the microstructure

be chosen so as to maximize the rigidity of the resulting composite? Of

course, an elastic material which is rigid for one type of load may be soft

for another one, so to specify the problem completely we must specify

either the (macroscopic) stress cr or the (macroscopic) strain e. The goal

is thus to find either

max(Ae, e) fi(0, e) (4.1)
A.

or

mini(A o'a,o) = f2(O, ) (4.2)
A.

as A* runs over all possible effective moduli attainable by mixing A 1 and

A2 in the specified value fractions. We emphasize that the symmetry of

A* is not restricted in (4.1)-(4.2). If e (respectively, u) is not isotrop-

ic then there are preferred spatial directions, namely those of principal

strain (stress), so the optimal A* will not be isotropic.

The Hashin-Shtrikman variational principle applies if A, and A2 are

"well-ordered", i.e. if A 2 - A 1 is a positive definite Hooke's law. It yields

a pair of explicit, concave optimizations for evaluating (4.1) and (4.2) [9].

The conditions of optimality determine examples of extremal sequential-
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ly laminated microstructures. In general (for 3-dimensional composites,

made of two anisotropic materials) the concave optimization will proba-

bly have to be solved numerically. It can be solved explicitly, however,

in several interesting special cases; these include when A 1 and A2 are

isotropic and either (i) the spatial dimension is 2 [23-25], (ii) the spa-

tial dimension is 3 and both materials are incompressible [7], or (iii) the

spatial dimension is 3 and one material is degenerate or rigid [26].

When e and a are isotropic, (Ae,e) and (A*'jo,,,o) can be viewed

as "generalized bulk moduli." In this case the optimal bounds (4.1)-

(4.2) reduce to those established long ago by Hashin and Shtrikman [27].

However, unlike [27] our bounds do not assume that A* is isotropic. Such

generalized bulk modulus bounds can also be found in [6,14,19].

The examples (4.1)-(4.2) are merely special cases of a much more

general theory [9]. It can handle upper as well as lower bounds, and sums

of energies as well as a single energy.

Similar bounds can also be proved using the translation method [24-

26]. That approach has the advantage of applying in some cases where

A 1 and A2 are not well-ordered. However, it has the disadvantage that

we lack a direct connection between translation bounds and optimal mi-

crostructures.

A problem analogous to (4.1) arises in the modeling of coherent phase

transitions. There energy minimization is due to thermodynamic consid-

erations. The distinct phases have different stress-free strains as well as

(possibly) different Hooke's laws. The special case of two phases with
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identical Hooke's laws has been studied extensively in the metallurgical

literature, e.g. [28-29]. A treatment from the present viewpoint is given

in [30]. Not surprisingly, the Hashin-Shtrikman variational principle per-

mits one to consider the case when both the stress-free strains and the

Hooke's laws are distinct [31].

4B. Conducting polycrystals.

A polycrystalline composite is one consisting of a single, anisotropic

material, mixed with itself in various orientations. We focus here on

effective conductivity rather than elastic behavior. A natural question,

analogous to (4.1)-(4.2), is to seek polycrystalline composites of maximal

or minimal effective conductivity.

The problem may be formulated more precisely as follows. Consider

an anisotropic material with conductivity tensor a. We may suppose that

a is diagonal, so the basic material is completely determined by its three

principal conductivities: a( 0 0)
a= 0 a2 0

0 0 a3

Now consider a polycrystalline composite made from this material. We

suppose for simplicity that it is macroscopically isotropic, i.e. that the

effective conductivity has the form z.I. What are the smallest and largest

possible values of a,?

The optimal upper bound turns out to be

1
a. _< -(a, + a2+ a3). (4.3)

-3
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This bound is easily derived from classical variational principles; it was

shown to be optimal by Schulgasser [32] using a version of sequential

lamination.

The optimal lower bound is more interesting. It is

at* Ž &min , (4.4)

where amin is the unique positive root of the equation

3 3/ 1 a i - - O r m i l• j + -i minl = 0 (4.5)

The only known proof of (4.5) makes use of the translation method [33].

The bound was shown to be optimal for a uniaxial basic crystal in [33],

and for a general basic crystal in [20]. Interestingly, the construction used

for the uniaxial case does not suffice for the general case. The optimal

microstructures described in [20] have a sort of self-similar structure.

They were discovered with the aid of a computer search for sequentially-

laminated geometries of high resistivity.

The bound (4.4)-(4.5) is not in fact restricted to macroscopical-

ly isotropic composites. If cei are the principal conductivities of an

anisotropic polycrystal then one can show that

3 *_ _- amin > 0. (4.6)

= a*j + -Omin

On the other hand, (4.6) is not always optimal in the anistropic setting

[34].

There are also some analogous results for elastic polycrystals. These

include bounds in the generalized bulk modulus of an anisotropic poly-

crystal in two or three space dimensions [35], and bounds on the effective
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shear modulus of an isotropic elastic polycrystal in two space dimensions

[36].
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INTRODUCTION

The mechanical response of a typical brittle elastic solid weakened by a
diffuse distribution of microdefects can be divided into three distinctly disparate
phases. During the initial phase, characterized by a rather dilute concentration of
defects, the material hardens when subjected to quasistatically increasing me-
chanical forces or temperatures. As the defects multiply and grow, the
specimen's stiffness (overall elastic moduli) decreases even though the tangent
modulus remains positive. The subsequent phase occurs as a result of
microdefect interaction. Phenomenologically, this phase is confined to a narrow
neighborhood of the apex of the stress-strain (or, more accurately, force-
displacement )curve, as the specimen's overall tangent stiffness approaches zero
value. In the subsequent, or softening, phase the specimen's tangent modulus is
negative.

The partition of the mechanical response into the above three phases is
by no means formal. As the recent large scale numerical simulations [1, 2]
clearly indicate, the succession of phases is directly related to the extent of the
microcrack clustering within the solid. From the micromechanical viewpoint,
these three phases (regimes) are characterized as follows:

(i) In a carefully manufactured material subjected to moderate external
loads and temperatures the microdefect concentration is dilute during the initial
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phase of a deformation process. The spatial fluctuations of stress and strain
fields are confined to narrow neighborhoods of widely spaced defects. The
probability that the stress concentrations may be enhanced by interaction of
microdefects is rather remote. Consequently, the exact positions of the micro-
defects within the specimen has little or no relevance to the macroresponse. As a
result, during this phase the microdefects influence the macroresponse
principally through their volume averages. The material is within this range
macro-homogeneous, simple and local.

(ii) As the external loads are increased, new microdefects are nucleated
and the already existing ones grow larger. The probability that the distance
separating two growing microdefects becomes small enough to influence their
further growth through interaction becomes more substantial. Thus, the distance
between microdefects becomes an important parameter, defining not only the
macroresponse of the solid but, more importantly, its propensity to failure.
Non-locality becomes a significant feature of the macroresponse and the macro-
fields become less homogeneous. In the neighborhood of the apex of the force-
displacement curve, the deformation process is strongly influenced by the
largest macrodefects. In general, a macrodefect (macrocrack or shear band) may
form in two ways. Firstly, a macrodefect can form as a result of the loss of
stability of a single microdefect of preferential geometry (brittle phenomena
such as splitting). The second alternative emphasizes coalescence of a large
number of interacting microdefects (localization or quasibrittle failure). A
particular specimen may fail in either of these two modes depending on the
temperature level, strain rate or the degree of lateral confinement. It is important
to note that a material is not brittle or ductile per se. The degree of brittleness or
ductility is a result of a set circumstances, i.e. loading and thermal environment
to which the specimen is subjected.

(iii) During the softening regime (in strain controlled experiments) the
deformation process is entirely dominated by the geometry of the largest cluster
of defects spanning the entire specimen. The geometry of this defect is defined
by the extreme statistical momenta of the initial distribution of micro-defects.
Consequently, the response in the softening regime is essentially
nondeterministic since it depends on the unlikely events (see the experiments on
concrete specimens reported in [3] ).

Analyses of the material behavior in these three regimes are substantially
different. Hence, it is unlikely that a single method incorporating all possible
alternatives can be made simple enough to be appealing in applications. The so
called mean field theory (MFT) models are suitable for the analyses of systems
in which the macro-response is primarily influenced by the volume averages of
the micro-fields. In contrast, the percolation theory provides an eminently
suitable and computationaly efficient framework for the consideration of
systems near the percolation threshold (phase transition).
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RELATIONS BETWEEN MACROFIELDS

One of the principal tasks in structural analyses of solids containing
microdefects is to determine the expressions relating macrostresses and
macrostrains. Assuming that the volume averaging is justified the incremental

form relating volume average stresses a(x) and volume average strains e(x) is
in the isothermal case

dc = S: d + dS : + deP (1)

where S(x,H) is the fourth rank compliance tensor and dOP the conventional
plastic strain tensor. The components of the compliance tensor S depend on the
concentration, shape, size and orientations of microdefects as defined by a set
of parameters constituting the recorded history H, at each material point Thus,
the total increment in strain dc is a sum of elastic and inelastic strain increments

de = dep + dic (2)

The inelastic increment of the strain (as history is recorded H --> H + dH,
implying dissipation of energy)

di• = dS: a + dEP (3)

incorporates both brittle and ductile components, i.e. changes in compliance
(attributable to change in microcrack density) and plastic strain. The elastic
strain increments are defined by the first term on the right-hand side of equation
(1).

In conclusion, for given macrostress Y and its increment, the rate of

change of the macrostrain dc can be computed from (1) provided that the
effective compliance tensor S(H) and its rate of change dS, along with change
in the plastic strain, can be determined as a function of the change in the
recorded history dH.

This presentation will focus on the first of these two tasks related to the
formulation of the effective compliance tensor S(H) of an elastic matrix
weakened by a distribution of microdefects. In contrast to most of the existing
studies of this type the present one will not be limited to small-to-moderate
concentration of defects.
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MACROCOMPLIANCES - MEAN FIELD APPROXIMATIONS

The initial task in establishing the algorithms needed to compute the
macrostrains and their rates of change from expression (1) consists of a
rational, simple and reasonably accurate determination of the macro-compliance
S(H) of a macro-homogeneous solid containing a large number N of
inhomogeneities (voids, cracks and other microdefects). The problem is,
obviously, associated with local fluctuations in stress and strain fields
attributable to the microdefects. As shown in [4] these fluctuations can, at least
in principle, be rigorously determined solving a system of N coupled integral
equations. In cases of current interest N is, by definition, a very large number.
Moreover, the kernels of the above mentioned integrals are complicated
tensorial functions combining derivatives of the Green's function for
displacements and tensors of elastic moduli. Consequently, a rigorous solution
of the problem is feasible only when the matrix is homogeneous, isotropic and
linearly elastic and when the defects are of simple geometry forming regular,
periodic patterns.

In typical engineering materials neither of these conditions is satisfied.
Even when the stress and defect fields are originally periodic (as in the case of
plates joined by lines of rivets) the defect growth emphasizes increasing
disorder. As shown by [5, 6] a self-similar growth of an initially periodic crack
pattern represents a thermodynamically unstable path. Therefore, a physically
appropriate model must emphasize the randomness of the microdefect pattern
and pattern evolution.

In view of the extensive literature devoted to the determination of elastic
parameters of materials containing defects (see, for example books [4, 7, 8, 9]
and a long list of papers and state-of-art reviews) a comprehensive recital of all
relevant details and existing models might, indeed, verge on being redundant.
Nevertheless, a precis on main aspects of the theory, in the spirit of the recent
[10] summary is needed to provide for a better understanding of the
forthcoming arguments.

In general, most if not all of the existing models start from consideration
of a homogeneous, linearly elastic material occupying a finite volume V which
contains a statistically significant sample of microcracks and microvoids.
Assuming that the defects are small in size in comparison to the characteristic
length of the representative volume element V, it seems reasonable to assume
that the macrofields can be computed simply by volume averaging of the corres-
ponding microfields. In this case it can be shown [11, 12, etc.] that the
expression for the overall compliance tensor allows for the additive
decomposition

S(x,H) = S(x) + S*(x,H) (4)
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into the compliance tensor S of the virgin, elastic matrix and the compliance S*
attributable to the presence of the microdefects. The compliance tensor S* can
be determined in several different manners.

Derivation of expressions for the components of the compliance tensors
S* and S (and/or elastic parameter tensors C* and C) is a matter of
convenience and desired level of rigor. The expressions for the components of
the tensor S* can be often derived using the already available formulas for the
displacements in a point on the void perimeter. When formulas for the
displacements are not available they can be, at least in principle, derived from
the corresponding Green's function [4, 8]. More often than not these
derivations are too arduous to be truly competitive with other methods. The
other possibility is to apply the Eshelby inclusion method [8]. However, a
direct connection exists [12] between the Eshelby inclusion method and the
method based on the direct use of the expression for the displacements of the
points on the void perimeter.

Within the space constraint of this paper an exhaustive appraisal of
various mean-field models is obviously not possible. Instead it suffices to
discuss in a rather superficial manner the three most frequently used models.
The simplest model is the so-called dilute concentration (or Taylor's) model
which entirely ignores the microdefect interaction. In the case of the self-
consistent model each microdefect is influenced by the other microdefects only
indirectly through the use of the overall effective compliance. The so-called
differential method is based on essentially equipolent assumptions as the self
consistent method. Generally speaking, common to all mean field (first order
effective continua) theories are the following assumptions:

(a) the external stress field (far field) of each microdefect is assumed to
be equal to the far field (macro) stresses,

(b) the external fields for each microdefect weakly depends on the exact
positions of adjacent microdefects and is equal to the volume/area
averaged microfields, and

(c) the characteristic length of the largest microdefect is small in compa-
rison to the linear dimension of the volume over which the averaging is
performed.

The first of these three assumptions eliminates the need for computing
local stress fluctuations. The second assumption represents a major
simplification by eliminating from considerations the exact position of each
defect. Simultaneously, this assumption limits the application of mean field
methods to low-to-moderate concentrations of microdefects. At higher
concentrations the interaction becomes more important necessitating knowledge
related to the statistics of distances separating the microdefects. The third
assumption is intuitively obvious. Consequently, the mean field theories are
inherently incapable of dealing with the critical states which are characterized
either by the emergence of a large cluster of coalesced microdefects or by a
macrodefect growing from a single microdefect of preferential geometry.
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The mean field estimates for the elastic moduli are available in the
existing literature for a host of defects of simple geometries. These derivations
are especially simple when the overall response is macro-homogeneous. In a
two dimensional, plane stress case of an elastic matrix weakened by randomly
oriented rectilinear slits of equal length 2a it is possible to derive the requisite
formulas in closed forms. Figure 1 depicts relative loss of elastic modulus as a
function of the [13] damage variable Na2 (where N is the number density, i.e.
the number of slits per unit area). First order self-consistent and Taylor
estimates are available in [14, 15, etc.]. The second order estimate [16] was
determined after substantial computations. The same is true for the so-called
replacement scheme [17].

1.0
- - Taylor method

S* Differential method
0.8 - Replacement scheme

S• SCM

0.6- SCM - 2nd order

S0.4 -

0.2-

0.0"
0.0 0.2 0.4 0.6 0.8 1.0

Na 2

Fig. 1. Reduction of elastic modulus as a function of slit
concentration.

The analogous analyses are available for the elastic matrix in condition
of plane strain perforated by a large number of circular voids of radius a.
Figure 2 presents results summarized in [10] in addition to [18] computations
and experimental data from [19]. In both cases it was the macrostress which
was prescribed at the volume boundary.

Similar analyses are possible and available for rectangular and triangular
voids. The derivation of self consistent estimates in cases of defect induced
macro anisotropy [11, 12, 15, etc.] requires some computational effort and the
results are not always available in a simple analytical form.
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Fig.2. Reduction of elastic modulus as a function of

concentration of circular voids (lacunity).

The advantages of the mean field theories are rather apparent from the
discussion above and they, at least partially, explain their enduring popularity
and omnipresence. The mean field models are obviously firmly based on the
underlying physics and geometry of the the microstructure. Secondly, the mean
field theory methods have an algorithmically appealing structure allowing for
establishment of relatively efficient computational schemes. Nevertheless, these
methods are not without shortcomings as pointed out in the literature. Some of
the principal shortcomings and deficiencies of the mean field models, having a
limiting effect on their applicability, are:

* Statement that the MFT are valid for low-to-moderate microdefect
concentration densities is meaningless in absence of a physically justifiable
quantitative criterion defining precisely the range of the concentration density
within which these methods provide sufficiently accurate estimates.

- In absence of such a criterion and "exact" solutions it becomes
impossible to select the most accurate model, i.e. with an exception of the dilute
concentration model the choice of a particular approximation simply becomes a
matter of preference.
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* Eliminating from considerations the exact location of each defect, i.e.
the distance between the defects and, thus, their direct interaction, the MFT
become unsuitable for considerations of phenomena dominated by defect
interaction (hot spots). For example, analyses of localization phenomena require
introduction of a length scale absent in MFT models.

* Assumption that each defect is exposed to the average, in contrast to
local, stresses becomes suspect for larger defect concentrations.

* The conclusion that macroparameters depends only on volume
averages of microdefects is, at the very best, correct for overall moduli. It is
intuitively obvious that the brittle rupture strength in most cases depend on the
largest defect, i.e. on the extreme moments of the defect distribution (or
unlikely events).

* Finally, it is seldom explicitly stated but nevertheless obvious that the
largest defect must be much smaller than the linear dimension of the
representative volume element (RVE). Otherwise, volume averaging makes little
or no sense at all. This, naturally, means that the size of the RVE must be
increased as the defects grow (assuming that one is actually appraised of the
size of the largest defect). This process can be, at most, continued until the RVE
becomes as large as the specimen itself unless in the meantime one of the
defects, unbeknown to the analyst, exceeds its critical size.

All of these shortcomings and ensuing limitations are generally known if
not always spelled out. Eliminating from considerations the position of defects
and local stress fluctuations is exactly the reason for the superior computational
efficiency of the MFT models. However, this efficiency is bought at the
expense of the rigor and limitations in the range of its applicability.
Unfortunately, the exact solutions of a very large system of coupled integral
equations is computationaly prohibitive. In fact, since the defects themselves are
typically of irregular geometry such a venture would make little sense as well.

Summing up all achievements and limitations of the mean field theories
Cleary in [14] with a sense of foresight stated that "until some tractable
probabilistic description has been achieved, it seems that a single isolated site
model of heterogeneities will have to suffice".

MACROCOMPLIANCES, PERCOLATION MODEL

According to available evidence the mechanical response in the neigh-
borhood of the apex of the force-displacement curve is characterized by
increasing heterogeneity of the stress and strain fields as a result of the
emergence of large clusters of coalesced defects. These clusters are typically of

92



random geometry and their sizes are commensurable in length to the smallest
linear dimensions of the specimen itself. Once the volume averaging becomes
suspect, analyses of topologically disordered microstructures by extensions,
modifications and assorted reincarnations of the mean field, or similar
deterministic models becomes a lost cause. In agreement with [14] the only
rational strategy involves considerations based on the methods of statistical
nature.

A class of methods, steadily gaining popularity in many fields of
statistical physics dealing with critical phenomena, belongs to the general
framework of the percolation theory. As already stated the percolation theory
provides a powerful and efficient framework for the study of processes and
systems in the close neighborhood of the critical state (or percolation threshold)
defined as emergence of an infinite cluster. The principal objective of these
studies is focused on the determination of certain universal laws and quantities
which emerge from an otherwise random process and random geometry. All
processes and systems having identical or nearly identical universal parameters
form a universal class. These parameters are universal in the sense that they do
not depend on the microstructure of the specimen, i.e. details of the distribution
of defects, inhomogeneities, inclusions, etc..

Dilution of a homogeneous, elastic matrix by voids and/or crack-like
defects constitutes one of these universal classes. The percolation studies of the
problems and systems belonging to this class center on the determination of
critical lacunity (i.e. critical volume/area defect density) f., and scaling law for
the specimen stiffness C -, Ifce - fil in the neighborhood of the percolation

threshold f -- fce. The difference Ifce - fi is the proximity parameter and r
(typically not an integer) is the universal exponent. It is notable that the
percolation threshold fce depends to some extent on the microstructure of the
material (i.e. distribution of bonds within the material microstructure). This is
not only expected but also a physically justifiable consequence of the fact that
the rupture depends on the crystalline structure of the material. In contrast, the
scaling laws for the stiffness C and some other parameters are truly universal.
In other words, the universal exponent r is for each of these parameters
independent of the details of the microstructure. Indeed, as a defect cluster
grows in size to a macrodefect (macrocrack, shear band, etc.) many times larger
than a grain the dependence of the deformation process on the microstructural
details becomes negligible. Naturally, the scaling laws in their simplest form
Ifce - flr implicitly contain the assumption that in the close neighborhood of the
percolation threshold all parameters depend only on the infinite cluster and not
at all on the other defects and defect clusters. As a result, universal exponents
can be obtained from simulations and/or experiments only approximately.

The distinction between the elastic percolation studies and more
traditional inquires into conductivity (permeability) problems is readily
appreciated from the following physical argument. In terms of conductivity,
percolation takes place as soon as an infinite cluster at f = fc traverses a
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specimen, connecting its opposite sides (i.e. forming a bore-hole). The loss of
rigidity of the specimen will, however, occur only when the infinite cluster
transects the specimen into two or more finite size fragments. The
corresponding defect volume density f = fce is in a three dimensional case larger
than fc- In two dimension the two percolation thresholds coincide with each
other, since a cluster which traverses a specimen transects it at the same time.

In general, universality depends on the dimensionality of the problem,
number of components of the order parameter exhibiting singular behavior and
the site connectedness. An order parameter is a mechanical variable
undetermined at the percolation threshold, i.e. a parameter which typically
exists only on one side of the percolation threshold. In the case of elastic
percolation problems, the specimen stiffness C(x) is a logical choice for the
selection of the order parameter since some of its components vanish at the
percolation threshold (critical lacunity). The number of the vanishing
components of the fourth rank tensor defining the specimen stiffness C will
depend on the defect shape and distribution (orientation).

The percolation thresholds fce and universal exponents are typically
determined by large scale Monte Carlo numerical simulations. The magnitudes
cited in the literature (and the subsequent text) refer to infinitely extended
systems. Since the numerical simulations on infinite systems are not possible
the theoretical values must be corrected using finite size scaling techniques.

Since the universality also depends on the connectedness range a
distinction must be made between the cases of: (a) non-overlapping
(impermeable or hard core) defects which may join into clusters only by sharing
part of their perimeters without intersecting and (b) the overlapping (permeable
or soft core) microdefects sharing part of their volume or surface.

The case of non-overlapping voids and/or cracks presents a much
simpler problem. For numerical simplicity voids are generally assumed to be
equal in size and shape. Void centers are assumed to occupy sites of either
regular or random lattices with probability of q = 1 - p. At a given fraction of
void occupied sites q, each void is, in average, connected to qz neighboring
voids, where z is the coordination number or number of nearest neighboring
sites. In other words, qbz is the average number of missing bonds per site of
the lattice. The superscript b stands for the bond percolation.

Conversely, the lacunity (porosity) f of the solid may be determined as a
product of the fraction of sites occupied by a void qS and the packing (filling)
factor v. Consequently, qcSv is the critical lacunity or average number of sites
occupied by voids at the percolation threshold. The shape of voids enters
computations via their packing (filling) factor v. Superscript s stands for the site
percolation model.
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The critical lacunity (porosity) fc of an infinite elastic plate containing
critical concentration Nc (number of voids or slits per unit surface area) of voids
(plotted in Fig. 2 as point A) can be then written as

fc = v pcs = Nc Avoid = 0.45 ± 0.03 (5)

As an example consider plates perforated by circular voids with centers
located on triangular and square lattices. According to the expression (5) the
ability of the plate to transmit external loads will be exhausted at emergence of
the infinite cluster, i.e. when the fraction of sites occupied by voids is qcs = 1 -
0.5 = 0.5 and qcs = 1 - 0.593 = 0.407, respectively for two considered lattice
forms.

The above result contradicts the estimates of the critical lacunity
computed on the basis of the cell method. Assuming that the periodicity of
defects persists up to the failure leads to a nonconservative estimate of qc = 1.0.
Thus, the preservation of periodicity requires twice as much energy as it is
needed in the actual process, emphasizing random distribution and growth of
defects. The result (5), supported by experiments [19], contradicts the
differential method estimates claiming that the macrofailure will occur only at
infinite void density. It should be noted that the critical lacunity fc is
independent on the microstructure of the material (lattice). The dependence on
the void shape is reflected through the packing (filling) factor v.

A much more complicated problem ensues if the void centers are
allowed to form a truly random network and when the voids are allowed to
overlap (intersect or permeate each other). The clusters shapes in this case may
assume a large spectrum of irregular forms typically observed in micrographs of
rupture surfaces.

A comprehensive recital of the requisite continuum percolation theory
methods needed for these analyses would take much more space than accorded
to this precis. For the present purposes it suffices to mention that the critical
lacunity, i.e. fraction of plate surface occupied by randomly positioned circular
voids is independent of loading and dilution sequence. Large scale Monte Carlo
simulations [20, etc.] strongly corroborate this statement.

Using the so-called excluded area method [21] the total area of voids at
the percolation threshold is for the case of overlapping circular voids equal to

fc = (N Avoid)c = 1.13 (6)

This result is somewhat deceiving since a large part of this critical area is in the
case of overlapping voids counted more than once. The actual porosity can, in
this case, be computed as being fc = 0.68 (point B in Fig. 2).
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Using similar methods [20, 22, etc.] the critical density of isotropically
oriented rectilinear slits of length 2a (allowed to intersect) is again derived as a
threshold value of the Budiansky, O'Connell damage parameter

(N a2) = 1.40 (7)

The determination of the stiffness (or compliance) of an elastic specimen
perforated by a dense and random distribution of voids is, at first glance, a
formidable assignment offering little or no hope for analytical solution.
However, if the objective is limited to the analyses of states at the incipient loss
of stiffness, it suffices to focus on the consideration of weakest segments and
their contribution to deformability. This problem, in relation to solids weakened
by voids, is first addressed by [23] who mapped a perforated continuum on a
discrete random lattice (network) known as "nodes-link-blob" (NLB) picture.
In the case of circular (spherical) voids the NLB model is familiar under a
picturesque sobriquet swiss-cheese model.

The initial step in mapping the perforated continuum on the node-link-
blob model consists of constructing the Voronoi tesselation. Each edge of the
Voronoi polyhedra is the line equidistant from the centers of the two voids it
separates. If the two voids separated by the line do not touch or overlap, this
link has a finite strength. The links separating centers of overlapping voids have
zero strengths.

The entire structure is now approximated by macrolinks joined at nodes.
The distance separating the nodes are proportional to the defect size, i.e.

correlation length ý. Each macrolink consist of microlinks (narrow stretches of
segments separating the adjacent voids also known as cutting bonds) and thick
parts (blobs) surrounding the nodes. The blobs and microlinks are connected in
series. Taking a hint from the behavior of lattices near the percolation threshold,
it seems reasonable to assume that the deformability of a macrolink is governed
by its flexural stiffness as f tends to fce. Since the deformability of a link is
proportional to the cube of its thickness of the segment ,it seems reasonable to
assume that the contributions of blobs and thicker microlinks to the deformation
of a macrolink are negligible. Thus, the actual deformability of a macrolink is
dominated by the bending rigidity of thinnest microlinks. As the most flexible
microlink deforms some of the load is transferred to the neighboring
macrolinks. At the incipient loss of rigidity of the specimen every macrolink is
loaded up to its capacity. The ultimate loss of rigidity (elastic percolation
threshold) is, therefore, the result of a cascade-like sequential loss of bending
rigidities of macrolinks. Thus, it is possible to assume that at the incipient loss
of rigidity each macrolink has the same rigidity and carries identical load.
Consequently, subject to all of these assumptions, the scaling law for the
stiffness of the specimen at the percolation limit can be deduced from the
flexibility of thinnest segments separating the adjacent voids.
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After a long derivation , the scaling law for the axial macrostiffness for

the elastic plate perforated by circular voids is obtained is obtained in [24] to be

K - (fc- f)5.17  as f -- fc (7)

The extreme flatness of the stress-strain curve in the neighborhood of the
percolation threshold makes experiments very difficult. Nevertheless, results
measured by [19] are in close agreement with the analytical estimate (7).

SUMMARY AND CONCLUSIONS

In general, the mean field and percolation models are entirely
complementary in the sense that they apply in different regimes. In matching, or
coupling the estimates for the transport parameters (such as specimen stiffness,
diffusivity, conductivity, etc.) computed using the mean field and percolation
models a due caution must be exercised in interpretation of these estimates.
From the standpoint of the mean field theories, the macro compliance and the
average elastic moduli are entirely interchangeable. Knowing all components of
the compliance tensor S (or tensor of elastic moduli C) it is always possible to
compute unambiguously the overall (effective) elastic modulus E and Poisson's
ratio v. This is, of course, true as long as the correlation length ý is much
smaller than the linear dimension Lr of the representative volume element and
the smallest linear dimension Ls of the specimen itself.

Percolation theory, in contradistinction, deals with systems near or at
the incipient emergence of the infinite cluster ý --) oo. In the existing literature
devoted to statistical physics, which is much more plentiful than the list of the
herein referenced papers, the elastic percolation threshold is, somewhat less
fortunately, defined as a void volume/surface density at which the elastic or
bulk modulus vanishes. In fact, at this point the volume averages are
meaningless since no volume exists which contains the largest defect as its
characteristic (correlation) length 4 tends to infinity. For example, in a specimen
transected into two large fragments averaging their elastic moduli makes
absolutely no sense at all.

Thus a correct definition of the elastic percolation threshold would be
that at f = fcc when one or, perhaps, more components of the specimen
stiffness tensor C, defining its capability of transmitting forces in a given
direction, vanish. It is in this light that the results of the mean field and
percolation theories must be matched.

It is both notable and obvious that in absence of the percolation theory
or exact solutions organizing statistics generated by many computations and
experiments, the discussions related to the selection of the most accurate mean
field theory are not entirely rational. Specifically, the self-consistent model
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predicts that the elastic modulus of an elastic plate vanishes when the slit or void
density is finite (Figs. 1 and 2). The differential method, based on the same
fundamental assumptions, ascertains that the overall elastic modulus E
approaches zero only as the slit and/or void density tends to infinity. The
question of their relative accuracy, however, is not in their high defect
concentration limit. In fact, neither of two is supposed to be valid near that
limit. Even though the current percolation studies are suggestive in favoring the
self-consistent method, comprehensive examination of the cross-over regime
are necessary for more definitive conclusions with regard to relative merits of
individual mean field models.
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A STATISTICAL-MICROMECHANICS MODEL FOR PARTICULATE MATERIAL

Ching S. Chang

Department of Civil Engineering
University of Massachusetts, Amherst, MA. 01003

INTRODUCTION

Mechanical behavior of granular media is important in
many fields of studies such as soil mechanics, powder
mechanics, and ceramic mechanics. The mechanical behavior
of granular media has been studied by borrowing the stress-
strain models, such as elastic, elasto-plastic, or plastic
models, developed for continuum materials. These continuum
models consider neither the discrete nature nor the
deformation mechanism of granular materials.

A more rational approach should be one that considers
the granular system as an assemblage of particles. When
subjected to loading, the deformation of the granular system
results from particle deformation as well as slip between
particles. Along this line, the constitutive behavior of
granular assemblies is investigated using a micro-mechanics
approach, taking into account the interactions between
particles. Efforts in this direction can be found in
references [1,2,3,4,5,6,7,8]. However, these work have been
developed based on Ruess assumption of uniform strain.
Thus, the developed stress-strain theories can only be
applied to small deformation conditions. They are not
suitable in the modelling of failure/damage of granular
solid [9].

Effects of higher order strain including particle
rotation has been investigated in references [10,11]. Non-
uniform strain condition is a significant factor influencing
the overall behavior of the granular material, especially in
the condition of large deformation. Attempts of including
the effect of heterogeneous strain on the constitutive
modelling have been made in references [12.13].

Due to the complex nature of interactions among large
number of particles, it is necessary to employ statistical
methods to consider the non-local interaction within a
heterogeneous material. Therefore micro-mechanics and its
synergism with statistic theory is a viable way to model
such type of material. In this paper, development of such
synergism will be addressed and the derived constitutive
relationship is illustrated by comparing the predicted
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behavior with that measured from sand samples in experiments
under various stress conditions.

GENERAL CONSIDERATION

For a granular material, it is possible to define a
representative volume element which consists of a large
number of particles. From a practical point of view, a
necessary characteristic of a granular material is
statistical homogeneity. A strict statistical definition of
this concept must be expressed in terms of n-point
probabilities and ensemble averages, see e.g. [14].

In such a representative volume, the space variation of
the field variable such as stress and strain are statistical
homogeneous, if the homogeneous boundary conditions are
applied, given by either one of

ui(S) =F•i x. or Ti(S) = a n. (1)

0 0

where E and a. are constant strain and stress
1]

respectively.

When strain F 0 is prescribed on the boundary, it

follows by Hill's principle [15], that the strain averaged

over the representative volume e. is equal to the strain

0 0
E .. Conversely, when stress o.. is prescribed on the

boundary, the stress averaged over the representative volume
0

a.- is equal to the stress a...

It is noted that the representative volume element is
completely analogous the infinitesimal element in continuum
mechanics. The infinitesimal element in continuum mechanics
is in reality a representative element which is composed of
a sufficiently large number of particles but has a size
sufficiently small in relation to the size of engineering
problem. This would imply that the classical field
equations of continuum mechanics are assumed valid. And it
is of interest to obtain the constitutive relationship
between the averaged stress and strain:

THREE-LEVEL MICROMECHANICAL APPROACH

Granular material can be viewed at three levels, namely,
1) representative unit, 2) micro-element, and 3) contact. A
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representative unit is defined as an assembly which contains
large number of particles to be representative of the
granular material. Each particle in the representative unit
is in contact with several neighboring particles. These
particles form a particle group, termed as micro-element,
which is an elementary unit at microscopic level. Each
contact within the micro-element between a pair of particles
is regarded as the basic unit of granular material. A
schematic representation of the three levels of granular
material is shown in Fig. 1.

MICRO-ELEMENT

REPRESENTATIVE

UNIT

INTER-PARTICLE CONTACT

FIG. 1. Schematic figure for three levels of granular
material

In the following, we first deal with the translation and
rotation of discrete particles which cause the micro-scale
discontinuity due to sliding and separation at contact
level. At micro-element level, the continuum concepts of
stress and strain are introduced accounting for the micro-
discontinuity. At representative volume level, the overall
behavior is obtained by averaging the behavior of micro-
elements with a homogenizing process.

DISCRETE BEHAVIOR AT CONTACT LEVEL

Granular soil is envisioned to be rigid particles
connected by imaginary elastic-plastic springs which allow
sliding and separation of particles. There are two modes of
movement for a particle: translation, ui, and rotation, wi"

Based on the kinematics of two rigid particles of convex
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Dnmshape, the relative displacement AS, and relative rotation

Ae nm between particle 'n' and particle 'im' at the contactl

point 'c'.

AS ri = AU. -AU.n + e (AOw rkm -Am (2)
1 1 1 ijk jk jk

AO nm = Amm - AWn (3)
1 1 1

where the quantity eijk = the permutation symbols used in

tensor representation for cross product of vectors.

The relative angular rotation, AO , is related to the
contact couple. For simplicity, we limit our discussion to
particles with convex shape and neglect the effect of
contact couples. The relative displacement representingnm
spring-stretch at the contact point 'c', AS is related to

the contact force, Af. , by a incremental expression as

A

Af. rm= K.rm AS ,m- Af nm (4)1 1] J 1

Ar

where K nm is the contact stiffness tensor and Af. is the
ij 1

residual force in excess of the contact strength in the
cases of particle sliding or separation. Shear contact
stiffness vanishes after sliding occurs and normal contact
stiffness vanishes after separation occurs.

EQUIVALENT CONTINUUM

Since the assembly consists of a large number of
particles, it is expedient to treat translation and rotation
of discrete particles as continuum fields. On this basis,
the discrete system can be transformed into an equivalent
continuum and its behavior can be described by the continuum
concepts of stress and strain.

With the absence of couple stress of the micro-element,
it has been shown [11] that an asymmetric deformation strain
can be defined for granular soil in terms of the continuum

n an -nvariables u. .and Aw in the following manner:1,10
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n n -n
Ae. E Au. +e (0 (5)

i Ij ijk k

The symmetrical part of AE is equal to the symmetricali3

part of displacement gradient, representing the usual
symmetric Cauchy strain of the micro-element. The skew

symmetric part of AE represents the net spin of particlesij
(i.e., the difference between rigid body rotation of the
micro-element and the average rotation of particles).

The strain defined in this way not only is theoretically
more generic but also furnishes a convenient kinematic
relationship which relates strain to the spring stretch,

AS n I, at the contact between the center particle 'n' and itsl

neighbor particle 'im', given by

An. = An.ii L nm (6)

where, Lnm. is the branch vector joining the centroids of

particle 'n' and particle 'im'. Note that L nm= rnc - rmc

and r. = the vector measured from the centroid of the3
particle 'n' to the contact point 'c'.

The relationship between the contact forces and the
stress of the micro-element can be defined by employing the

theorem of stress mean [11, 16]. The local stress Aan. is

expressed as the volume average of the dyadic product of

contact force Af nm and branch vector Lnm
J 1

AO n L L.n Af.nm (7)
Acij 2Vn m i ]

where Vn is the volume associated with the n-th micro-

element. Summation of the volume Vn over all micro-elements
is equal to the total volume of the representative unit,

such that V = V V
n

Based on the following relationships: (1) stress versus
contact forces (Eq. 7), (2) force versus spring-stretch at
contact (Eq. 4), and (3) strain versus spring-stretch at
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contact (Eq. 4). The constitutive equation for the micro-
element can thus be obtained in the following incremental
form:

n n n An
AGj i jkl _ kl + AGij (8)

where Cnikl is the local stiffness tensor for the n-th

micro-element given by

n -L ' Lm (9)ijkl 2 Vn m L jk L1 (9)

An

The stress Ao.. in Eq. 8 for the n-th micro-

element, resulting from the residual forces due to sliding

and separation, is given as follows;

^nj n 1 L nmAf (10)

2V m

HOMOGENIZATION PROCESS

Here, we consider a given volume to be representative of
the granular solid such that the boundaries of the said
volume are subject to displacements compatible with a
uniform overall strain. Under such conditions, Hill [15]
has shown that, for heterogeneous material, the overall
stress and strain can be expressed as the volume averages of
their corresponding quantities at local level.

Thus the overall stress and strain for the
representative unit, denoted by Aoij and Aeij, are regarded

as volume averages of the local stress and local strain at
the micro-element level, such that

A * Vn Aa.n (11)ijV n

AF* Vn An (12)ID V n

Corresponding to the overall stress and strain, it is
reasonable to define an overall stiffness tensor for the
representative unit such that the overall stress-strain
relationship can be expressed in the following form:
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Aoij Cijkl A'kl (13)

It is noted that the stiffness tensor Cijkl is not the

volume averaged stiffness tensor, Cijkl, defined by

1 vncn
Cijkl = V Vn C jkl (14)

n

In a heterogeneous material, the stiffness tensor at any
given point can be decomposed into two parts: the average
stiffness tensor of the volume and the fluctuation stiffness
tensor at this point, given by

Cijkl= Cijkl+ 'Cijkl (15)

At any point in a heterogeneous medium, force
equilibrium must be satisfied, thus

AMY. i= (C AU) = 0 (16)
ij,n. ijkl k,1 ,

The equilibrium condition at point 'p' can be expressed with
an integral form in the following manner:

J Aij,i(q) Au jm(p,q) dv(q) = 0 (17)

where Aukm(p,q) is a weighted function. Here a function of

Green's type is selected such that Aukm(p,q) represents the

displacement Auk at point 'q' due to an unit force fm at

point 'p' in a homogeneous medium with Cijkl" The selected

Green's function satisfies the following equation:

CE AU i(p,q) + 8 j8(p,q) = 0 (18)
ijkl ukm,li m

where 8(p,q) is the dirac-delta function.
Integrating Eq. 17 by part, the equilibrium equation of

integral form with Green's function can be expressed in
terms of the displacement at any given point 'p' by
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Aum(p) = tj (q) Aujm (p, q) ds(q) - Auk(q) tkm(p,q) ds(q)

- isC ijkl(q) A kl(q) AUjm, i(q) (p,q) dv(q) (19)

where

t (q) = Cijkl(q) A kl(q) ni (20)

tkm(p,q) C oijkl(q) Aujm, i(q) (p,q) n1 (21)

The displacement at point 'p' is determined not only by
the conditions on boundary surface but also by the
fluctuation of stiffness and local strains in the
heterogeneous material. It is evident from this equation
that, for homogeneous material, the displacement at point
'p' can be determined solely by the conditions on boundary
surface.

Taking derivative of Eq. 19 to express variables in
terms of strain. Eq. 19 can be derived to obtain the strain
at location 'p' in the heterogeneous body, given by

A (p)= E ijkl)kl (q)ujm, in(pq)dv(q) (22)

where

AEmn= itj(q)Aujm, n (p,q)ds(q)- iAuk(q)t km,n (p,q)ds(q) (23)

Since the two surface integral terms in Eq. 23 are
referring to a representative volume which is sufficiently
large compared to the size of an individual particle,
employing Hill's principle, the value of Amn is equal to

the overall strain.
It is noted from Eq. 22 that the strain at point 'p' is

affected by the strains at all other points in the volume,
showing clearly a non-local effect. For simplicity, let the
term of volume integral in Eq. 22 be expressed in reference
to the mean strain tensor as:
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IV 8C ijkl (q)AF, kl (q)AU jmin (pq)dv(q) 
= E mnkl (P)AZ kl (24)

Then we can relate the overall strain AE to the localMn

strain AE n by,mn

n n
A C I i = G Ijkl A F_ kl (25)

,n
where the dimensionless tensor G ijkl' associated with each

micro-element, is given by

G n = I - E n (26)
mn mnkl mnkl

where I ijkl is a fourth rank identity tensor defined in

terms of Kronecker delta 8.. as

(8 8 + 8 6 (27)
ijkl 2 ik il ji ik

Since the representative unit consists of large number
of randomly arranged particles, the heterogeneous system can
be viewed as a statistical homogeneous system. The strain

distribution tensor G n is approximated by,
ijkl

n Exp (-0.5v n (28)G ijkl= Ai jmn Mnkl

where v n is a dimensionless tensor as the ratio of the
ijkl

variance of the micro-element stiffness Cn ith respect
ijkl w

to the average stiffness of the packing C.. defined as
ijkl

n n
V ijkl= C ijMn(C mnkl - C mnkl) (29)

The dimensionless tensor G n associated with each
ijkl'

micro-element, describes indirectly the degree of
heterogeneity of the material. From Eq. 12, the following
condition must be satisfied:
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SG I ijkl (30)nijkln

Thus, mathematically, Gijkl is a probability density

function in tensorial form.
The constant tensor A.. involved in the distribution

ijkl
function must satisfy the condition of identity (i.e., Eq.
30). Thus it can be obtained by

-1 1 n n
A = 2 Exp(-0.5vn kl)V (31)
ijkl V n ik

With the fluctuation of strain (Eq. 25), using Eqs. 8,

11 and 13, the stiffness tensor C ikl can be written as a
'weighted' volume average of micro-element stiffness tensor

Cikn ,given by
ijkl'

= o n Gn (32)
ijkl n ijmn mnkl

EXAMPLE

In the present theory, structure of the granular
material is intended to be represented statistically by a
set of micro-elements where each micro-element is defined by
a specific arrangement of particle group. To illustrate the
current model, the geometry of five micro-elements were
randomly generated; each consists of eight spherical
particles with 0.2mm radius. Each micro-element was rotated
on the axes 6 times to create six micro-elements as shown in
Fig. 2, resulting a total of 30 micro-elements. The
idealized material, represented by these thirty micro-
elements, has material symmetry along the directions of
three axes. The idealized material has an average co-
ordination number of 7 and void ratio 0.7, representing an
uniformly graded medium dense sand with rounded particles.

To evaluate the capability of the constitutive model at
large strain conditions, the stress-strain behavior of this
idealized material is predicted for the following loading
conditions: one dimensional test, and cubical triaxial
tests. The normal and shear contact stiffness, k n= k5= 105

N/m, are used for the following predictions.
Prediction is made for one-dimensional compression

behavior of granular material preceded by isotropic
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compression. In this prediction, the inter-particle

friction #,= 17 0 is used. The predicted results in Fig. 3

shows that, during loading in the vertical direction, the
value of K (i.e., the ratio of vertical stress to the

0

horizontal stress) decrease from 1 to a value of 0.4 and
remained to be nearly constant. The predicted trend is

FIG. 2. Illustration of micro-elements used in the
example

compared with the experimental results on medium dense Napa
Basalt [17] shown in Fig. 3. The prediction gives excellent
agreement with the experimental behavior even though the
soil structure is hypothetical. It is noted that, at
microscopic level, a substantial amount of sliding occurs
despite the horizontal movement is constrained.

The constitutive model is used to predict stress-strain
and volume change behavior of the idealized granular
material under cubical triaxial loading conditions with
different values of b, where b = (a2-03)/ (ai-C3). Figure 4

shows the predicted stress-strain and volume change behavior

using 4, equal to 250.
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FIG. 3. Predicted one dimensional compression behavior
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FIG. 4. Computed stress-strain curves for true triaxial
condition.
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Although the prediction is based on the idealized
material represented by 30 micro-elements, the predicted
trend of stress-strain and volumetric strain characteristics
are remarkably similar to that of experimental values for
Monterey sand [18]. The predicted peak frictional angle for
various stress conditions are within the range of values
experimentally obtained from various types of granular sand
[18, 19].

The predicted failure surface on octahedral plane is
compared with the failure surfaces empirically hypothesized
by Mohr-Coulomb, Matsuoka [20] and Lade and Duncan [18], as
shown in Fig. 5. It is the unique capability of the present
theory which predicts the failure strength of granular
material under complex loading conditions solely on the
basis of inter-particle friction property.

...... Mohr-Coulomb

U1  - Matsuoka
. Lade and Duncan
0 Prediction

1/.
04P

asa

FIG. 5. Predicted failure surface on octahedral plane
compared with other hypothesized failure
surfaces.

SUMMARY

Perceiving granular material as a collection of
particles, a constitutive law for granular material is
derived based on micromechanics approach, taking into
account the mechanisms of sliding and separation of
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particles. The constitutive model explicitly accounts the
effects of micro-structure and its evolution, thus is
capable of modelling inelastic and failure behavior.

The predicted behavior for an idealized material
represented by 30 randomly generated micro-elements, has
shown remarkable similarity to the stress-strain behavior
observed from experiments under various loading conditions.
This agreement in the predicted and measured behavior
indicates the potential applicability of this constitutive
theory in comprehensive modelling of complex behavior for
granular material.
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Introduction

The application of tungsten heavy alloys (WHA) to the problem of kinetic
energy penetration requires knowledge of the behavior of the material at high
strain rates. Two issues are of particular concern, most obviously the ability of
an alloy to resist dynamic tensile mode loading generated by projectile launch
and subsequent flexure. In addition, it recently has been shown (1) that the
penetration ability of depleted uranium (DU) appears to reside in its ability to
undergo localized adiabatic shear failure and thereby self-sharpen. Tungsten-
based penetrators have thus far not shown such behavior, and there is much
interest in establishing a basis for changing this.

Unfortunately, while considerable past effort (2-10) has been devoted to gen-
erating stress-strain data for WHA subject to both static and dynamic tensile,
compressive, and even torsional loading, relatively little light has been shed on
the actual micromechanisms responsible for strain rate sensitive deformation
and failure. In addition, most studies have involved minimal microstructural
variation, so that the possible roles of grain size, prior deformation, and so forth
have been difficult to assess. Accordingly, the authors have begun a systematic
study of the influence of microstructural parameters in the development of
damage in WHA. The objectives of this paper are to integrate both recent
(11-14) and new results into a general picture of the critical microscale events
involved in dynamic tensile and compressive (local shear) failure, and to assess
the potential for controlling material response by microstructural alteration.

Materials

Four generic alloys were chosen for study, all based on 90-91 weight percent
tungsten; their elemental makeup, corresponding designations, and tungsten
grain sizes are given in Table I. As shown in Figure 1, these materials actually
are composites composed of essentially pure, body-centered cubic tungsten
dispersoids embedded within a tungsten-rich (typically 16-24 w/o) face-
centered cubic matrix. All the alloys were prepared by liquid phase-sintering,
and all of them were studied as-sintered. The Ni-Co alloy, however, also was
prepared in a highly worked (swaged 25% and aged) condition. The latter is
shown in Figure 1c, where the elongated W-grains are evident.
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_________________ Table 1. - Materials

Designation Composition (wt %) Grain Size (g.tm)
8Ni-2Fe 90W-8Ni-2Fe 24

7Ni-3Fe 90W-7Ni-3Fe 16
Ni-Co 91W-6Ni-3Co 23
Ni-Mn 90-4Ni-6Mn 7

(a) 8Ni-2Fe (b) 7Ni-3Fe

(c) Ni-Go, swaged 25%; (d) Ni-Mn
swaging direction horizontal

Figure 1 - Alloy microstructures viewed at same magnification. tungsten
grains (and precipitates) in relief dueC to preferential polishing
of matrix.
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Several other microstructural features are pertinent to the study. For example,
the 8Ni-2Fe alloy was particularly "clean," i.e., homogeneous and pore-free,
while the 7Ni-3Fe was characterized by a more inhomogeneous W-grain dis-
tribution and a significant pore population. Porosity also was present in the
Ni-Mn (Figure ld), an alloy whose matrix should, on the basis of these
micromechanical considerations, be particularly prone to adiabatic shear. In
the case of the Ni-Co alloy, the Co constituent reduced the ability of the matrix
to maintain W in solution, resulting in a dispersion of fine tungsten precipitates
throughout the matrix (Figure 1c). It should be noted that the Ni-Mn alloy
turned out, because of its porosity, to be prone to premature, flaw-induced
tensile failure.

Particularly important to the mechanical response of the alloys are the two
distinct types of interface present in the microstructure. The first constitutes
the two-phase boundary between W-grains and the matrix, while the second
represents flat, roughly circular, direct single-phase contact between tungsten
grains. To the extent that alloy constituents are able during processing to wet
the latter surfaces, local bonding at W-W interfaces may be somewhat variable.

Experimental Procedures

Quasistatic compressive and tensile tests were performed at a strain rate of
10-4s' using a servo-controlled hydraulic test machine under displacement
control conditions. Dynamic tests, corresponding to strain rates of 600s` to
5500s-1, were run in a split Hopkinson pressure bar adapted for both compres-
sive (15) and tensile (16) modes of loading. Compression specimens consisted
of right circular cylinders 6.35 mm in diameter by 12.7 mm in length; tensile
specimens were 3.18 mm in diameter, with 7.62 mm gage lengths. All com-
pression tests were performed using unlubricated interfaces between samples
and loading platens. The specimen barreling which resulted was desired, as it
produced a state of stress within the specimen which tended to promote local
shear.

In the following section, the results of "dynamic" tensile experiments per-
formed at strain rates on the order of 1000s' are compared with compression
tests run at 1000s" to 2000s"1. Another set of compression experiments was
performed at a higher rate of loading, corresponding to a strain rate of
approximately 5500s" and a strain of about 0.5, to afford maximum opportu-
nity for the development of unstable shear bands.

After failure, tensile fracture surfaces were characterized by scanning electron
microscopy (SEM), and some specimens were sectioned for evidence of early
stages of damage. Compression specimens were likewise sectioned parallel to
the load axis, polished, and examined by SEM.
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Results

Shown in Figures 2, 3, and 4 are true stress (Y) - true strain (e) curves for
8Ni-2Fe, 7Ni - 3Fe, and Ni-Co, all in the as-sintered state. It is evident that
yield strengths,* flow stresses, and hardening rates for these materials are
similar in both tension and compression at each strain rate. The principal dif-
ference between the data sets is the distinctly lower (tensile) ductility obtained
for the 7Ni-3Fe material under quasistatic conditions, while the high strain rate
elongations are virtually identical for all three materials. It appears that the
primary effect of increasing the loading rate is to dramatically elevate the yield
point, with a slight decrease of the hardening rate, while concurrently lowering
the ductility. At both strain rates, tensile and compressive flow curves gradu-
ally deviate from one another with increasing strain, so that tensile failure
occurs at a stress level significantly below the corresponding (equivalent
strain) point in compression. However, beyond a certain strain, the tensile
stress is nominal, in that necking occurs; similarly, the compression samples all
bulge at their midsections with increasing strain, deviating from the ideal cyl-
inder configuration assumed for the true stress computation. The combination
of these two factors accounts for most of the apparent tension-compression
stress differential shown in the figures.

2500 I I I 1 I 1

- Compression
2000 - ---- Tension

1500 -Dynamic

True 1500Stress ._
(M~a) 1000 _•-""--. .

•.-. " "" u~asistatic

500

0 5 10 15 20 25 30 35 40

True Strain (%)

Figure 2 - Deformation behavior of as-sintered 8Ni-2Fe alloy.

Approximate dynamic yield strengths result from extrapolation of the early
Pochhammer-Chree oscillations in the sample, using a best-fit procedure
and back-extrapolation of the unambiguous data for strains greater than a
few percent.

120



2500 i i

- Compression

2000 - Tension

1500Dynamic
True

Stress
(MPa) 1000

500

0 5 10 15 20 25 30 35 40

True Strain (%)

Figure 3 - Deformation behavior of as-sintered 7Ni-3Fe alloy.
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Figure 4 - Deformation behavior of as-sintered Ni-Co alloy.
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Swaging alters the above picture dramatically. First (Figure 5), the average
flow stress is increased, while the rate of strain hardening is greatly reduced.
Under dynamic tension, in fact, the strain hardening coefficient now is nega-
tive. Yield points appear to be raised, with one exception; in the case of qua-
sistatic compression, the deviation from elastic linearity occurs at
approximately the same value of stress as for the unswaged material (Figure 4).
Finally, both the quasistatic and dynamic ductilities of the swaged Ni-Co are
drastically lowered, versus the corresponding values for all three of the as-
sintered alloys.
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2000
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Figure 5 - Deformation behavior of 25% swaged Ni-Co alloy.

Characterization of tensile fracture surfaces by SEM shows that regardless of
microstructure, the overall fracture at quasistatic loading rates is predomi-
nantly composed of cleared tungsten grains (Figure 6). Failed intergranular
matrix zones also are observed, composed primarily of dimples; in the case of
Ni-Co alloy, W-precipitates lie within the dimples. Under dynamic conditions,
however, the most prominent fractographic features are W-W facets (Figure 7),
surrounded by two variants of matrix failure. In the first case (8Ni-2Fe and
7Ni-3Fe), the facets generally lie at the centers of large dimples created by
W-matrix decohesion (following W-W microfracture) to form contiguous lig-
aments. These eventually separate by void sheet nucleation and coalescence,
or by tensile ligament shear failure (Figure 7a, b). In the second case, involving
Ni-Co in both as-sintered and swaged conditions, there is little W-matrix
decohesion following W-W fracture, and the latter facets are connected by
extensive sheets of tungsten precipitate-nucleated microvoids (Figure 7c, d).
Additionally, the overall fracture is more evenly divided between W-W
cleavage and intragranular microfracture.
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(c) Ni-Co, (as-sintered) (d) Ni-Co (swaged 25%)

Figure 6 - Quasistatic fracture Surfaces (F* 04 ')
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(a) 8Ni-2Fe(b N-F

:9'4
(c) Ni-Co, (as-sintered) (d) Ni-Co (swaged 25%)

Figure 7 - Dynamic fracture surfaces (F =I 1000K').
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Figure 8 represents a section through a 25% swaged Ni-Co tensile specimen
failed dynamically at a strain rate of - 1000s1. Within the neck indicated by
the arrow in Figure 8a can be observed several modes of pre-failure damage,
including W-W separation (Figure 8b) and W-cleavage cracks (Figure 8c). As
indicated by the arrowed zone in Figure 8d, shear of tungsten grains appears to
be involved in the formation of W-cleavage cracks.

I PM

(a) Macroscopic view, showing necked (b) W-W separation.
region (arrow) containing damage.

(c) Connected W-cleavage cracks (d) Shear-nature of
(arrows). W-cleavage process.

Figure 8 - Section through dynamic tensile failure of Ni-Co (swaged
25%), showing sub-(fracturc) surface damage mechanisms.
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Compressive stress-strain curves obtained during high strain rate (~ 5500s1 )
deformation of all five materials (including Ni-Co in both the as-sintered and
25% swaged conditions) are shown in Figure 9. The qualitative similarities
between the curves, i.e., initial hardening followed by subsequent softening,
could be interpreted to imply that deformation mechanisms likewise are simi-
lar. Sectioning of specimens strained approximately 50% reveal that this def-
initely is not the case.

3000 I I I

2500 Ni-Co, 25% swaged Dynamic

2000

True \- \ 7Ni-3Fe
Stress 1500 - 2
(MPa)

1000 - Ni-Co

500- Ni-Mn
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0 I I

0 5 10 15 20 25 30 35 40 45 50

True Strain (%)

Figure 9 - Compressive deformation at dynamic strain rate of
approximately 5500s-1.

In particular, 7ni-3Fe, Ni-Mn, and swaged Ni-Co (Figures 10 - 12) all form
narrow, unstable shear bands within broad, otherwise stable shear zones ori-
ented at approximately 45* to the compression axis. These may crack over long
distances (Ni-Mn, Figure 11) or on a localized basis (swaged Ni-Co, Figure
12). On the other hand, no such shear zones were produced in 8Ni-Fe (Figure
13) or in unswaged Ni-Co (not shown). The line in Figure 13 shows the locus
of most intense strain within the broad general zone; no localized (unstable)
deformation was evident. Study of cracked shear bands revealed evidence of
melting, as shown for swaged Ni-Co in Figure 14. Energy dispersive spec-
troscopy indicated that the melted droplets along the crack interface consist of
almost pure tungsten. The melting of tungsten (TM, = 34100C), strongly sup-
ports the attainment of an adiabatic state within local shear bands.
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Figure 10 - Unstable compressive shear band in 7Ni-3Fe.
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Figure I11 - Unstable compressive shear band and associated local microcracks
in Ni-Mn.

128



Figure 12 - Unstable compressive shear band and associated local microcracL in
Ni-Co (259• swag.ed).
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Figure 13 - Diffuse compressive shear band in 8Ni-2Fe. Line indicated
approximate locus of maximum shear deformation.
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Figure 14- High magnification view of apparent shear melt zone in
Ni-Co (25% swaged); melted particles are pure tungsten.

Discussion

Recalling the stress-strain results and damage observations presented above,
several questions present themselves:

1) What is responsible for the fact that the dynamic stress-strain curve is

essentially simply the quasistatic curve offset by a higher yield point?

2) What is the origin of the quasistatic tensile ductility differential between
the nominally similar 8Ni-2Fe and 7Ni-3Fe alloys, and why is it absent for
dynamic loading?

3) What is responsible for the high strain rate decrease in tensile ductility
versus that for quasistatic loading, and what (if anything) can be done to
enhance the dynamic ductility?

4) What factors control the formation of adiabatic shear bands during rapid
compressive loading?
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In regard to the first question, it should be noted that BCC materials (like
tungsten) are, as a class, extremely strain rate and temperature sensitive, as
compared to FCC alloys (like the present WHA matrices). In particular, Argon
and Maloof (7) have shown that for pure single crystal tungsten, the yield
strength increases remarkably with decreasing temperature (hence, also with
increasing strain rate, since the operative mechanism is thermally activated
dislocation motion). Moreover, within a true strain of less than 0.04, the initial
high rate of strain hardening, - 0.1, drops by more than an order of magnitude.
This is true over a broad range in temperature, hence by analogy should hold
for a wide strain rate regime as well. These tungsten-related trends are thus in
excellent accord with the dynamic versus quasistatic results shown for the
"composite" WHA alloys in Figures 2 - 5.

Further evidence of the dominant role of the W-phase is the fact that yield
points in the 8Ni-2Fe, 7Ni-3Fe, and as-sintered Ni-Co alloys are nearly iden-
tical. The Ni-Co matrix is not only chemically different from those of the other
two alloys, but it contains slip-impeding W-precipitates as well. On the other
hand, the tungsten grain components are similar in all three alloys. On this
basis, the higher quasistatic and dynamic yield strength measured for the
swaged Ni-Co WHA presumably reflects the influence of the high dislocation
content of the deformed W-grains.

The major difference between the two Ni-Fe alloys is the greater porosity of the
7Ni-3Fe variant. Thus, under quasistatic loading conditions, the two materials
yield and flow within both phases at stress levels below that required to fail
W-W interfaces. Within the W-grains, deformation is anisotropic (7), and
dislocations will tend to pile up at grain boundaries without being able to relax
by cross slip. If local voids are nearby, these stress raisers may trigger the early
development of shear cleavage cracks and early failure, i.e., as in the 7Ni-3Fe
alloy. On the other hand, failure in a void-free alloy like 8Ni-Fe (and as-
sintered Ni-Co) will not occur until the overall stress level is sufficient to crack
intragrain pile-ups. For this to occur, further strain and associated hardening
will be required, and will therefore lead to extended ductility.

Under dynamic loading conditions, the applied stress is required to exceed the
normal stress level for plastic flow, and the higher stress level is sufficient to
fracture the microfacets joining contiguous W-grains. Coalescence of the
resulting ensemble of microcracks produces failure at a lower value of strain
than that measured for quasistatic conditions, which require a certain defor-
mation level before the microcracks can occur. This difference in effect rep-
resents a critical strain (quasistatic case) versus critical stress (dynamic case)
criterion for failure.

If this hypothesis is true, then it should be possible to demonstrate it by altering
the nature of the W-W interface. Consequently, a dynamic tensile experiment
was performed involving a conventional 8Ni-2Fe alloy that was sintered for an
extended period of time (120 minutes versus conventional 30 minutes).
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Results are shown in Figure 15, where it can be seen that while the overall flow
stress is reduced, ductility is enhanced. In addition, the rate of strain hardening
is increased.

The basis for this change can be understood by considering the fracture surface
of the extended sinter alloy. As shown in Figure 16, the fracture morphology
is similar to that produced by the normal sintering treatment, with one
exception-many of the W-W facets are not "clean." Instead, they are covered
with beads and filamentary strings composed of what energy dispersive spec-
troscopy prove is matrix material. Two basic types of wetting are observed.

In the first case, Figure 17a, it appears that while wetting (bonding) has
occurred on the facet shown, there was no bond between the matrix material
and the adjoining facet. To the extent that the wetting occurred, in this instance
the apparent strength of the interface was lowered. In Figure 17b, however, it
is clearly evident that wetting has occurred over most of both contiguous fac-
ets. Upon separating from one another, the interfacial alloy deforms in a duc-
tile fashion. It is considered likely that this additional ductile deformation
(rather than brittle microfracture) zone accounts for the enhanced overall duc-
tility and enhanced strain hardening of the extended sinter alloy. Similarly, the
partial wetting of other facets (Figure 17a) probably reduces the strength of
these interfaces. Both effects are commensurate with the extended sinter
results shown in Figure 15, i.e., enhanced strain hardening and ductility, but
lower ultimate strength.

Recalling the high strain rate (5500s1) compressive stress-strain curves of
Figure 9, it is evident that negative strain hardening in WHA is not a correlating
factor for adiabatic shear. In fact, the one parameter which did seem to corre-
late with propensity to undergo unstable shear was the presence of some sort of
defect structure. In particular, the stably-deforming 8Ni-2Fe and as-sintered
Ni-Co alloys were structurally homogeneous and free of voids. Conversely,
the 7Ni-3Fe alloy was characterized by pores and matrix inhomogeneity;
Ni-Mn by porosity; and swaged Ni-Co by an apparent high initial population
of mobile dislocations.

This is a surprising finding, since it is well known (17) that for non-composite
(compared to WHA) materials such as steels, the development of adiabatic
shear bands is controlled by material properties, rather than microstructural
factors. For example, adiabatic shear bands form at a critical strain (18)

np0Cp(Tp - TO)
yc = 0(A + B)

where n, A, and B are strain hardening parameters, p is the density, Cp is the
specific heat, T. is the melting point, T, is room temperature, and (X is a con-
stant. Thus, y¢ is a function of a collection of material properties. Similarly,
the width of an adiabatic shear band should be (19)
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Figure 15 - Effect of sintering period on dynamic deformation of 8Ni-2Fe.IT

Figure 16 - Macroscopic view of fracture facets for extended-sinter
8Ni-2Fe alloy.
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(a) Brittle failure of partially wet W-W facets (site A, Figure 16).

(b) Ductile failure of mutually we-W-W facets (site B, Figure 16).

Figure 17 - Details of fracture W-W facts in extended 8Ni-2Fe.
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where X is the thermal conductivity, and T., •., and •., are the temperature,
shear stress, and strain rate, respectively, within the band. Again, the rela-
tionship is microstructure independent. Experiments on ferrous, Ti, Al, and
Cu-based alloys have shown (18,19) the fundamental validity of these rela-
tionships.

Tungsten heavy alloys, however, may represent a more complex situation.
Shown in Figure 18A is a plot of d (defined in Figure 18b) versus W-grain size
(GS) for the three alloys which displayed adiabatic shear. It is clear that not
only is d -c GS, d is in fact approximately equal to GS. Moreover, since this is
so, it suggests by similitude of deformation that y, must be about the same for
each alloy-this despite the fact that their nominal thermophysical properties
are sufficiently different (based on their matrix constituents) that widely
varying %e appear possible. It is impossible to compute a theoretical value for
Ty due to the current unavailability of strain hardening data for the matrix
alloys.

20 -Ni-Co

•0Ni-Mn -

(g±m) 7N-3Fe

5

0 I I
0 5 10 15 20 25

GS (g~m)

(a) Shear band width (b) Definition of shear
versus W-grain size band width

Figure 18 - Effect of W-grain size on formation of adiabatic shear bands.

Thus both y% and d seem to be related to the W-component, seemingly a con-
tradiction, since calculations indicate that tungsten should not shear adiabati-
cally. And, in fact, it almost certainly does not in the present context.
Adiabatic shearing occurs in fact only in the matrix phase, but only when the
W-grains have deformed sufficiently to reach a critical state such that an ade-
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quate mean free path exists between a sufficient number of adjoining
W-particles. This local instability event may be triggered by inhomogeneities
such as voids or, especially, large pockets of matrix. Thus, the intrinsic shear
instability threshold of the matrix may be significantly lower than that implied
by the results of testing the composite. On the other hand, it is clear that the
adiabatic shear criterion for the matrix alone, while important, is insufficient to
predict the unstable shear resistance of a typical WHA. This is a key difference
between this peculiar, essentially composite, class of material and a conven-
tional structural alloy.
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Abstract. Continuum characterization of crack arrays by vectorial
and tensorial parameters (that are volume averages) and their use in analysis
of physical properties of cracked solids (effective elastic moduli, effective
conductivity) are briefly reviewed. Symmetry of the effective elastic
properties of cracked solids is discussed.

It is argued that, whereas such a characterization provides a useful
insight into the effective (i.e.volume average) properties, it may be less
useful for characterization of the fracture-related properties (determined by
local fluctuations of the defects' field geometry). Contrary to the spirit of
many damage models, there seems to be no direct correlation between
fracturing of a brittle microcracking body and change of its effective elastic
moduli.

1. INTRODUCTION

A brief summary of continuum modelling of microcrack-related
damage in brittle-elastic materials is presented below. Characterization of
crack arrays by tensorial and vectorial (volume average) quantities is
reviewed. In particular, the second order crack density tensor aX (Kachanov
et al [1-3]) is discussed.

Such tensor can be used for characterization of various effective
(i.e. volume average) physical properties of cracked solids (effective elastic
moduli, effective conductivity, etc.). The possibilities and limitations of such
approaches are discussed.

It is argued that, whereas the use of cc provides a useful insight into
the effective properties, the use of ax - type parameters in characterization of
the fracture-related properties may not provide such an insight. The reason is
that the fracture-related quantities (like stress intensity factors, SIFs) are
governed by local fluctuations of the crack array geometry, to which the
volume average quantities are not very sensitive. This also explains why no
direct correlation between fracturing of a brittle microcracking body and the
change of its effective elastic moduli seems to exist.
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2. SOME REMARKS ON SCALAR CRACK DENSITY
PARAMETER

A scalar crack density parameter conventionally used in various
models for the effective elastic moduli is defined as follows:

p = (1/A) y•/ = N</2>/A in 2-D; (2.1a)

p = (I/V) y 1/3 -N<13>/A in 3-D (2.1b)

where N is a number of cracks in the representative area A (volume V) in 2-D
(3-D) and l is a characteristic size of a crack which is half-length of a crack in
2-D and, in 3-D, radius of a circular crack (or a somewhat more complex
parameter for cracks of other shapes: l=(2S2/7tP)113 where S and P are the
crack area and perimeter, see Budiansky and O'Connell [4]); note that some
authors' definitions of p contain an extra multiplier 7c.

Below, we discuss certain implicit assumptions contained in the
definition (2.1) that may limit the use of p as a parameter.

According to the definition (2.1), contribution of a given crack into

the overall density p is proportional to 12 in 2-D and to 13 in 3-D. In fact,
individual crack's contribution into the effective compliance is, as is well
known, proportional to the product <b>l in 2-D and to <b>l2 in 3-D, where
<b> is the average displacement discontinuity across the crack.

Therefore, the proportionality assumed in (2.1) is rigorously correct
for non-interacting cracks (when <b> is proportional to l in 2-D and to 12 in
3-D, with the coefficient of proportionality independent of crack translation,
i.e. on the relative positions of cracks with respect to each other).

In general, however, this proportionality does not hold. For
example, in the configurations where the dominant mode of crack interactions
is stress "shielding" (parallel crack arrays), dependence of an individual
crack's contribution on l will be weaker than 12 in 2-D and than 13 in 3-D,
whereas in the configurations with stress "amplification" (collinear and
coplanar arrays), it wil be stronger.

This reflects the basic feature of parameters that are simple volume
averages (whether they are scalar or tensorial): they are insensitive to mutual
positions of cracks.
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In fact, however, even the effective properties - that are themselves
volume averages - may be sensitive to mutual crack positions, i.e. to the
statistics of crack centers. The following configuration provides a simple
example of "infinitely high" such sensitivity. Let us consider an array of
parallel cracks. In the first arrangement, they form rows of collinear cracks
with vanishingly small ligaments between them; the distance between rows is
sufficiently large (so that the overall density p is arbitrarily small). The
effective stiffness in the direction normal to cracks then tends to zero (in spite
of p-•0O). In the second arrangement, cracks are stacked in columns, with the
distances between columns being sufficiently large but the spacings between
stacked cracks within each column being vanishingly small, so that p -4-o.
The impact of this crack array on the effective modulus is vanishingly small.

(Note that the first arrangement also serves as an illustration that
small crack density does not necessarily imply that the approximation of non-
interacting cracks applies!).

If the fracture-related properties (that are determined by local
fluctuations of the defects' field geometry rather than by the volume averages,
see discussion below) are of interest, one should use p as a parameter
characterizing the process with even more caution.

Another limitation of the use of p as a parameter is that it is defined
by (2.1) with applications to the elastic properties in mind; therefore, the
contribution of an individual crack into p is proportional to 12 in 2-D and 13 in
3-D. In the properties other than elastic, this contribution may be entirely
different: for example, it will strongly depend on the crack opening in the
problem of fluid filtration through a fissured medium.

Below, we discuss a tensorial generalization of p - second order
crack density tensor - that accounts for orientations of cracks but, being a
volume average quantity, retains the same limitations as p.

3. CRACK DENSITY TENSOR

Second order crack density tensor ox was introduced by Vakulenko
and Kachanov [1] and Kachanov et al [2,3] as a volume average damage
parameter accounting fot crack orientations, as follows:

cc (1/A) I• li2nini in 2-D (3. 1a)

c = (1/V) y li3nini in 3-D (3. lb)
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where n is a unit normal to a crack and nn is a dyadic product; summation
may be substituted by integration over orientations.

Note that a is symmetric (as a sum of symmetric dyads) and
dimensionless (so that the case of small crack density can be formulated in
terms of smallness of atij).

Linear invariant of a

p = tr a = (I/A) 1 l,2 in 2-D, or (l/V) 11i3 in 3-D (3.2)

coincides with the commonly used scalar crack density parameter. Thus, ca is
a natural tensorial generalization of the scalar crack density.

For an isotropic (random) crack orientation distribution

a = P12/2 (in 2-D), or PI3/3 (in 3-D) (3.3)

where 12 and 13 are 2-D and 3-D unit tensors, correspondingly.

For a parallel crack array
ax = pnn (3.4)

Generally, a , as any symmetric second order tensor, allows a
principal representation:

oa = P1 n1 nl + P2 n2n2 + P3 n3n3 (3.5)

where n l, n2, n3 are mutually orthogonal unit vectors (principal axes of aX).
Representation (3.5) means that, in the framework of characterization of a
crack array by a, any crack array is equivalent to three mutually orthogonal
families of parallel cracks, with densities P1, P2, P3 .

Note that tensors identical or similar to ax have been subsequently
introduced by several authors (see, for example, Oda et al [5]).

4. USE OF CRACK DENSITY TENSOR IN THE PROBLEM OF
EFFECTIVE ELASTIC MODULI

The effective elastic compliances M.jl can be derived from an elastic
potentialf (complementary energy density):

Eij = af/oaij = Mijkl Ykl (4.1)
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so that the problem is reduced to finding f = (1/2) Mijklaij cld. We assume

that, in addition to being a function of y,f is also a function of ox.
If the material is isotropic in absence of cracks, f will be an

isotropic function of Y and a, i.e. will not change if both Y and aX undergo

the same orthogonal transformation. This implies that a and a enter f through
their invariants only (including the simultaneous ones). Since the stress-strain
relations are linear at constant a, potential f(a,a) must be quadratic in a.
Since the overall strain can be represented as a sum of the matrix contribution
Mi-lakl and the contribution AMijklald from cracks, similar representation
hol~s for f:

f(c , a) = fo(a) + Af(a , a) (4.2)

where fo = (1/2) MO ..klai.. (Ykl. The expression for Af(a, a) comprises seven
terms representing all independent combinations of the invariants:

Af(a , a) = il 1tr a tr('-a) + 112 tr(aa''0) + five more terms (4.2a)

where dot indicates one index contraction and the scalar coefficients Tli are,

generally, functions of invariants of a.

Since a is a second order symmetric tensor, effective elastic
properties are always orthotropic, i.e. a material with any arbitrary orientation
srtatistics of cracks possesses a rectangular symmetry (the axes of orthotropy
being co-axial with the principal axes of a).

The following question arises: to what extent is the conclusion on
orthotropy of the effective properties rigorous, i.e., to what extent is the
representation of elastic potential in the formf=f(a, a) justified ?

As shown in [2], such representation is rigorously correct in the 2-D
case of non-interacting cracks and is approximately correct (with good
accuracy) in the 3-D case of non-interacting cracks.

For interacting cracks, computer experiments based on the recently
developed method of analysis of interacting cracks [6] show that, even at high
crack densities, when the effective moduli are significantly altered by
interactions, the effective properties remain orthotropic with a good accuracy:
the terms in the matrix of elastic moduli that would have been zeros for an
orthotropic material, remain one-two orders of magnitude smaller that the
other, orthotropic terms.
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This fact implies that there exists a "natural" coordinate system for
calculation of the efffective elastic moduli - it coincides with the principal axes
of the crack density tensor aX - such that the matrix of effective moduli looks
"almost orthotropic" in this system.

The results outlined above can be generalized for the case when the

matrix is anisotropic in absence of cracks. Then, tensors (Y and a enter the

potential f(a,ax) through their invariants with respect to the group of
symmetry of the matrix (rather than with respect to all orthogonal
transformations). Such a generalization was outlined by Vakulenko and
Kachanov [1] and Kachanov [2] and explored in detail by Talreja [7] (with the
difference that instead of a damage tensor, a vectorial parameter was used; see
section 8 for discussion of vectorial parameters). Anisotropy of the overall
properties will depend on mutual orientation of the axes of symmetry of the
matrix and of the crack array. The material will not be orthotropic, except for
the cases when the crack orientations are aligned with the symmetry axes of
rhe matrix. The expression forf(a,a) will be much lengthier than (4.2) and
will contain a large (to very large) number of coefficients at the invariants.
They can be expected to be approximately constant when the crack density is
small (data of Talreja seem to imply their constancy). Experimental
determination of a large number of these coefficients seems to be a
challenging task, however.

5. FURTHER APPLICATIONS OF CRACK DENSITY TENSOR
IN THE PROBLEM OF EFFECTIVE ELASTIC PROPERTIES

One can use representation of potentialf(a,a) in the form (4.2) as a
convenient and simple tool for extension the results of either the self-
consistent or differential schemes (in the differential scheme, crack density is
increased in small increments and the reference matrix is recalculated at each
step) obtained for the random and parallel crack orientation statistics to the
case of arbitrary orientation statistics.

Note that direct application of these schemes to the case of arbitrary
crack orientation statistics is difficult; the conceptual difficulty arises from the
necessity to specify a priori the type of anisotropy and its orientation, since
solution of the problem of a single crack in an anisotropic effective matrix will
be required. (Note that another difficulty, of a more technical nature, arises
from the fact that such solutions may not be readily available, if crack's
orientation with respect to the axes of matrix' anisotropy is arbitrary).
Therefore, applications of these methods have been limited to the cases of
random or parallel cracks, or cracks with normals lying in one plane (Hoenig
[8]) when the type and orientation of anisotropy are obvious. In the general
case, however, they may not be obvious.
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One can use the results obtained in either the self-consistent or
differential schemes for the random and parallel crack orientation statistics as
an "input" and then use the representations of the type of (4.2) to tensorially
transform these results, through the use of a, to the arbitrary orientation
statistics. As demonstrated in [3], such an extension is done by quite simple
means.

We also note that for the differential scheme, such an extension to
the arbitrary orientation statistics corrects a significant defect of this scheme -
its "path-dependence" (sensitivity of the results to the sequence in which
cracks of different orientations are introduced). Indeed, let us consider a 2-D
configuration of two families of cracks forming an arbitrary angle between
them and restrict ourselves to the simplest case of small crack density (non-
interacting approximation applies). As discussed in section 3, the material is
rigorously orthotropic in this case. However, if the differential scheme is used
and one family of parallel cracks is introduced first and then the second one is
added into the newly recalculated (transversely isotropic) reference matrix
then the material is not orthotropic. This "path-dependence" is eliminated if
the above described procedure is used.

6. OTHER APPLICATIONS OF CRACK DENSITY TENSOR

Crack density tensor (x can be used in characterization of the
effective (i.e.,volume average) physical properties other than elastic: electro-
and heat conductivity, fluid filtration. The use of oa is based on representation
of the tensor that characterizes the state physical property in terms of (x. For
example, in the problem of (anisotropic) electric conductivity of a medium
that, in addition to a certain isotropic "background" conductivity, contains
crack-like cavities filled with conducting material, the tensor K relating the
vector of electric current j to the gradient of electric potential (. = K.V•) can
be expressed as

K - kI = f(a) (6.1)

where the term kI characterizes the isotropic "background" conductivity and
f(a) is a function of invariants of a . Unlike the fourth order tensor Mijkl of
elastic moduli, tensor K is a second order tensor; this makes representation
(6.1) much simpler than the one for the elastic properties. Similar
representations can be constructed for the heat conductivity and fluid
filtration, see [2] for details.

An important observation is that, although all the mentioned physical
properties possess the same orthotropic symmetry, the orientation of their
orthotropy axes is different from the one of the elastic properties.
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Indeed, if cc is used for characterization of the physical properties
other than elastic, it should be modified, as follows. According to the
definition (2.1), contribution of a given crack into the overall density aX is
proportional to 12 in 2-D and to 12 in 3-D. This relative weight of an individual
crack is appropriate fort the elastic properties, but may have to be modified
when other physical properties are considered (for example, in the problem of
electric conductivity it seems that this weight should be proportional to I and
12, in 2-D an 3-D; for fluid filtration in a fissured medium it should also
include crack opening).

For each of the mentioned physical properties, the axes of
orthotropy are oriented along the principal axes of the appropriate
modification of a; therefore, these orientations are, generally, different. This
implies, for example, that the data on anisotropy of electric conductivity
cannot be used to predict the anisotropy of wavespeeds, etc.

Note, also, that the appropriately averaged dyadics of the nn - type
were used in mechanics of granular materials for characterization of the
average orientations of grain contacts (for a brief review of such uses, see
Mehrabadi and Nemat-Nasser[10]).

7. HIGHER ORDER DAMAGE PARAMETERS

Crack density tensor ax provides the simplest tensorial generalization
of the scalar crack density. As discussed above, in spite of its simplicity, this
tensor provides useful insights into the effective properties of cracked media
and into the anisotropy of these properties (for example, the orthotropy of the
effective elastic properties, verified by more precise calculations of the method
of [6], holds with surprising accuracy). The use of a in combination with the
self-consistent or differential schemes provides a convenient tool to transform
the predictions of these schemes for the random and parallel cracks to the
general case of arbitrary crack orientation statistics.

If one wishes to use more "refined" damage parameters, then the
refinements can be made along the following two lines:

(A) Remaining in the framework of volume average parameters, one
can introduce more refined characterization of the crtack orientation
distribution, by adding to the nn - type dyads tensors of the higher (even)
orders, of the nnnn, nnnnnn, etc. types. Such refinements were considered
in literature from several points of view (see, for example, Kanatani [11]).
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This, however, may not necessary in the problem of effective elastic
properties, since, as discussed above, orthotropy of these properties (coaxial
with the second order crack density tensor) holds with good accuracy. As far
as other effective properties (conductivity, filtration) are concerned, they are
characterised by symmetric second order tensors (like tensor K of electric
conductivity, see section 6) and therefore possess the symmetry of an
ellipsoid; it seems that characterization of these properties by higher order
tensors may not be necessary.

(B) Using quantities that are not simple volume averages, but
depend on mutual positions, of cracks.

Refinements of this kind appear to be more important than the ones
of (A), not only for the fracture-related problems (where the importance of
mutual positions of cracks is obvious) but even in the problem of effective
elastic moduli - two configurations of parallel cracks considered in section 2
provide an illustration.

It seems that a physically reasonable way to construct a continuum
description of a crack array that goes beyond volume averages can be based
on the approach to many cracks' problems developed in [6]: it will have to use

statistical averaging of the transmission A- factors (that incorporate the
essential information on crack array geometry that determines crack
interactions).

8. ON CHARACTERIZATION OF CRACK ARRAYS BY
VECTORS

Several authors (see, for example, Talreja [7] and Krajcinovic [9])
used vectors (rather than second order tensors) as damage variables. We
remark that inadequacy of the odd order tensors as parameters of state was
discussed, from the point of view of general restrictions on constitutive
equations, by Leckie and Onat [12]. We note, also, that two other difficulties
arise when one tries to to actually use such variables:

(1) In the simplest case of random (isotropic) crack orientation
statistics, it is not clear what the vector of damage is;

(2) If one tries to construct the elastic potential as a function of T and

a vector of damage 0t: f =f(y,co ), then it appears impossible to linearize f

with respect to co; in other words, the simplest case of small crack density
(non-interacting cracks) cannot be recovered. This follows from the fact that,

in order to form a simultaneous invariant of the vector co and the second order

tensor a, one has to contract co with c twice, i.e. to form terms of the type

laijloiloj or Cija jkC1i 03k that are homogeneous quadratic functions of co

and cannot be linearized in co.
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9. ON CORRELATION BETWEEN FRACTURING OF A
BRITTLE MICROCRACKING SOLID AND CHANGE OF ITS
EFFECTIVE ELASTIC MODULI : GENERAL COMMENTS

In the sections above, we outlined the possibilities of
characterization of crack arrays by volume average quantities (like crack
density tensor) and demonstrated that this may provide useful insights into
various volume average physical properties (effective moduli, effective
conductivities, etc.).

However, the use of such volume average parameters may not be
adequate in the fracture-related problems, like estimates of proximity of a
given configuration to the failure point, estimates of lifetime, etc. The basic
difficulty is that the fracture-related quantities (like stress intensity factors,
SIFs) are governed by localfluctuations of the crack array geometry, to which
the volume average quantities are not very sensitive.

This observation is relevant for a number of damage models which
are aimed at description of fracturing of a brittle microcracking solid but in
fact deal with its elastic constants. This substitution is done either explicitly,
by using the effective constants as a damage parameter, or implicitly, by
constructing the elastic potentialf containing a certain damage parameter D;
aside from the statement that the derivative af/lD can be interpreted as an
energy release rate associated with damage, such a construction is simply a
model for the effective moduli.

The underlying idea - that progression towards failure is uniquely
correlated with the change of effective elastic moduli - may seem reasonable; it
appears particularly attractive because the effective moduli can be easily
measured.

An objection can be raised that, as is well known, a small crack in a
brittle material has a very small impact on the effective elastic constants but
drastically reduces tensile strength. One may argue, however, that, after a
certain initial set of cracks has been nucleated and started to grow, the
progression towards failure is uniquely correlated with the change of effective
elastic constants.

These issues are discussed below from several points of view.
Computer experiments that were used in the course of analysis (solving crack
interaction problems for a number of crack arrays) utilized the method of
analysis of many cracks' problems of [6].
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10. "PARADOXICAL" EXAMPLE

The configuration shown below present an example when
introduction of new cracks results in

(1) reduction of elastic stiffness (in the direction normal to cracks); a
(2) reduction of the SIFs (due to increased shielding), i.e.,

strengthening the material

Fig. 1. Introduction of new cracks as shown (dashed lines) reduces
the SIFs and, at the same time, "softens" the material (since it produces
additional displacements at the boundaries).

11. RANDOM CRACK ARRAYS. CLUSTERING OF CRACKS

The example above indicates that the relation between fracture-
related and effective elastic properties is not straightforward. This
configuration may not, however, represent realistic microcrack statistics
(although such crack patterns do occur in rocks and certain composites).

We considered randomly oriented cracks, and did the following
computer experiments. A number of 2-D randomly oriented crack arrays were
generated; statistics of crack centers was also random (subject to the
restriction that cracks were not allowed to intersect; this was achieved by
generating cracks successively and discarding a newly generated crack if it
intersects the already existing ones). For each sample array, we calculated:

(1) the effective Young's modulus Eeff ;
(2) maximal, among all crack tips, value of KI2 +K11

2 induced by a

uniaxial loading.(Strictly speaking, the value of KI2 +KII2 determines the
initiation of crack propagation only in the case of rectilinear crack extension; if
both K, and KII are present, a certain other combination of K, and KII is a
relevant parameter. Typically, however, this combination does not differ
much (numerically) from KI2 +K1I2 so that the latter quantity can be used for
an approximate estimate of proximity of a crack to the onset of propagation).
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We found that the value of Eeff was quite stable from one statistical
sample to another, whereas the value of Max (KI2 +KII 2) fluctuated
significantly (reaching high values in the samples containing two closely
spaced crack tips). Moreover, Max (KI2 +KII 2) tends to increase with the
size of the sample, at the same (or even decreasing!) crack density reflecting a
higher probability of occurrence of closely spaced cracks, i.e. at the same (or
even increasing!) effective stiffness Eeff. Thus, the fracture-related parameter
Max (KI2 +KII2) is statistically unstable, depends on specimen's size and does
not appear to be correlated with the statistically stable effective stiffness Eeff.

A closely related issue is that the SIFs are sensitive to clustering of
cracks: Max(KI2+K1I2) is, typically, substantially higher in the configurations
of the type 2b as compared with configurations of the type 2a, whereas the
difference between the moduli Mijkl for these configurations is generally
insignificant (provided the overall crack density is the same).

Fig.2. Clustering of cracks. SIFs are quite sensitive to clustering
whereas the sensitivity of effective elastic moduli is very low.

At the same time, the effective elastic moduli's sensitivity to
clustering is quite low, i.e. the difference between the values of Mijkl for
the configurations 2a and 2b is generally insignificant (provided the overall
crack density is the same).

Thus, monitoring the change in effective elastic constants may
not necessarily detect the onset of strong crack interactions and clustering
of defects - events that are crucially important from the point of view of
progression towards failure.
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12. CRACK - MICROCRACK INTERACTION PROBLEM

Fracture propagation in brittle micro-inhomogeneous materials is
often accompanied by microcracking (see, for example, observations of
Han and Suresh [13] on high temperature fracture of ceramics).

Microcracking may affect the resistance to fracture through
several physically different mechanisms (among them: toughening due to
"energy sink"- expenditure of energy on nucleation of microcracks). Here,
we discuss the mechanism of elastic interactions of the main crack with
microcracks (see [14] for details). Such interactions result in either
decrease or increase of SIF at the main crack tip, thus producing either
toughening or enhancing effect on fracture propagation.

In the analysis of this mechanism, the absense of correlation
between the effective elastic constants and the fracture-related properties is
particularly apparent. Indeed, if the microcracked zone is modelled by an
elastic material of reduced stiffness, the impact of this zone on the main
crack tip is the one of shielding. In reality, however, the interaction effect
is dominated by the several microcracks closest to the main crack tip, and
is highly sensitive to the exact positions of these closest neighbours.

Therefore, if locations of the microcrack centers are more or less
random, the impact of microcracks on SIFs fluctuates significantly and
even qualitatively (from shielding to amplification) from one sample of the
microcrack statistics to another. Thus, in the 2-D case, there is no
statistically stable effect of either shielding or amplification. In the 3-D case
(crack front interacting with arrays of microcracks), presence of local
peaks of SIFs along the crack front (where local crack advances will take
place) makes the overall effect of interactions the one of amplification [15]
- contrary to the predictions obtained by replacing the microcracked zone
by an "effective" material of reduced stiffness.

(This does not exclude, of course, the possibility of stress
shielding due to interactions with some special microcrack arrangements,
like an extremely dense array of microcracks parallel to the main crack [16]
or when locations of the microcrack centers are not random but "biased"
towards shielding configurations, as seems to be the case in some
experimental observations [13]).

Note, also, that stochastic asymmetries in the microcrack array
produce mode II SIF on the main crack under mode I loading. This effects
- physically significant since it causes crack kinking - is missed if the
damage zone is modelled by an effective material of reduced stifness.
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13. CASES WHEN FRACTURING CAN BE MONITORED BY
CHANGE OF EFFECTIVE ELASTIC STIFFNESS

The basic reason for the absense of direct correlation between
progression towards fracture and change of the effective elastic moduli is that
the fracture-related quantities (like SIFs) are determined by local fluctuations
of the microdefect field geometry whereas the effective elastic properties are
volume average quantities, relatively insensitive to such fluctuations.

Therefore, in the cases when evolution of the defects' population
follows more or less deterministic pattern, the progression towards fracture
may indeed be monitored by reduction of the effective elastic stiffness. Such
situations occur in certain laminated composites: for afixed arrangement of
layers, formation of microcracks may follow well established patterns; see
[17] where these patterns were called "characteristic damage states".

(We note, however, that, even in these cases, the correlation is not
straightforward: as fig.7 of [17] shows, for two (out of three) arrangements
of layers, the E-T curve is almost flat during most of the specimen's lifetime).

14. CONCLUSIONS

We discussed the continuum characterization of crack fields by
tensorial volume average quantities, and the limitations of such approaches.

It appears that the continuum characterization may provide useful
insights into various effective properties of cracked solids, like effective
elastic moduli, effective conductivity, etc. At the same time, it may not be
adequate for the fracture-related properties. The basic underlying reason is
that the fracture-related quantities (like stress intensity factors) are sensitive to
local fluctuations of the crack array geometry (like defects' clustering) to
which the volume averages are not very sensitive.
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Introduction

One of the contemporary challenges in solid mechanics is the prediction of
residual stresses in bodies subjected to plastic deformation under rolling contact.
In particular, it is of great practical interest to estimate the actual shakedown
residual stresses when such bodies are subjected to repeated loading which can
be described in terms of an envelope. Bearings, rail vehicle wheels, and railroad
rails are examples of such bodies.

The problem of calculating residual stress in railroad rails has motivated
implementation of the scheme for practical applications. Recent studies have
demonstrated that residual stresses play a significant role in the formation and
propagation of fatigue cracks in rails [1 - 4]. Figure 1 illustrates the concern
with this issue [5]. The thin lines are contours of measured values of the axial
residual stress, o' , in a rail, superposed on a schematic representation of the
growth of a detail fracture (DF). This rail was involved in a controlled crack
growth experiment which was conducted at the Facility for Accelerated Service
Testing (FAST) at the Transportation Test Center in Pueblo, Colorado. The DF
began as a shell in the rail head propagating longitudinally just below the running
surface. At some point in service, this shell turned down into the head and began
to grow in the plane of the rail cross-section. In this figure, the three heavy lines
denote the course of the crack front during the experiment. They represent crack
front positions during slow growth. The positions shown correspond to crack
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sizes, in terms of respective percent of the rail head area: 12%, 30% and finally
80%, at which the rail fractured. A section of rail adjacent to the fracture was
removed following the test and subjected to a destructive procedure for
estimating residual stress states [6]. The shaded area identifies the region of
tension for the axial component determined by the measurements. The rail was
also subjected to thermal stress (axial tension) during the test, since it was
installed in a string of continuous welded rail similar to the construction found
in modern railroad track. When the effect of the thermal stress is considered,
the figure suggests that most of the observed crack growth occurred in a zone of
moderate tension on the plane containing the crack. Clearly such stresses will
tend to accelerate the crack growth rate for this type of rail defect, a potentially
serious safety problem for railroads in the United States and Europe.

-30 - 30.

-I10

Figure 1. Experimental contours of axial residual stress with fatigue crack profile

superposed. Contour levels in ksi (1 ksi = 6.895 MPa).

Background

Classical shakedown analysis, based on Melan's and Koiter's theorems
[7, 8], yields the residual stress or strain distribution for the maximum load at
which a shakedown state exists. Conversely, this type of analysis cannot be used
to find the residual stress or strain distribution corresponding to actual maximum
loads which are smaller than the maximum shakedown load.

As part of the Federal Railroad Administration's rail integrity research
program, a new approach has been developed to estimate the residual stress
distribution corresponding to actual loads, under certain simplifying assumptions
[9, 10]. The mathematical basis for the model is a formulation of the problem
proposed and developed by Orkisz [9]. The problem is treated as quasi-static,
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and the loading program is assumed to be cyclic with specified bounds. Also,
the material is assumed to behave as an elastic - perfectly plastic medium with
a flow stress independent of both load amplitude and number of cycles, and the
actual residual stresses are assumed to be time-independent. An additional
convenient assumption, which also has some experimental support, is that the
residual stresses may be characterized by a field ffij(x,y), independent of the
axial coordinate z along the rail.

Under the foregoing assumptions, an estimate of the residual stress
distribution a'i(xk) is obtained by means of a nonlinear optimization to find the
minimum of the total complementary energy:

W(�--o • a°)=• C jki(i( aRo)i (•a-i; )dV (1)

subject to the constraints:

- = 0 in V (eqailibrium equations) (2)

-jvj = 0 on S, (static boundary conditions) (3)

cF(aij + d•) < 0 in V (yield conditions) (4)

where CikI are the elastic compliance moduli, v1 are the components of the unit

outward normal vector to S,, oIaO(xk) are the actual initial residual stresses in

the body, and a(xk, t) is the stress distribution obtained from a solution of a
purely elastic boundary value problem for the body under the given maximum
applied loads. The nonlinear inequality constraint (4) used in the present work
is the Mises - Hencky criterion:

4(I~) ((cij C 2) 2 + - ) + (3 -Y 3 1)2 +- 6(21 2 + O*23 + " 31) - 2a"y (5)

where cyj = ai + (3E and (Yy is the material flow stress. For anal'ysis of a rail,
the flow stress is assumed to be equal to the specified yield strength of new rail.
This assumption has been made to avoid the bias in the comparison of results
for different grades of steel. Also, it is well known that rail steel which has
worked thoroughly under the contact stress levels found in service tends to exhibit
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reduced yield strength coupled with kinematic hardening to plastic stress levels
above the original yield strength. Thus the present model may be viewed as a
compromise for the actual stress-strain diagram. The method presented here
can, in principle, accommodate more complicated material models, e.g., different
yield strengths as a function of location in the rail cross-section, representing the

- -in-situ properties after work-hardening in service. The residual stress estimate
aj thus obtained corresponds to an upper bound in the sense that

Alternative models based on the finite element method (FEM), boundary
element method (BEM), and finite difference method (FDM) have been
formulated to discretize cij(xk) in the complementary energy objective function
[11]. Most of the numerical implementation work completed to date has been
based on the original finite element formulation, which has advanced to the initial
stage of practical application.

The calculation procedure takes place in three distinct phases. First, the
elastic solution, which comprises the input to the nonlinear optimization, is
obtained by applying a contact pressure distribution (which simulates a railroad
wheel in contact with the rail head). The equations of bending for a beam on an
elastic foundation are used in conjunction with some assumptions which describe
the contact stress distribution to result in a complete description of the elastic
stresses induced in the rail cross-section under consideration.

Next, with substructuring elimination techniques, the objective function is
reduced to an expression in terms of the essential decision variables, namely:

those coefficients which determine a•(Xk) at a set of discrete locations in the
region of the body which is assumed to have experienced plastic yielding and
flow before shakedown (the "assumed plastic zone"). The search for these
coefficients comprises the final phase of the calculation procedure.

A software package for generalized nonlinear optimization [12] was
modified for the present work by taking advantage of the convex quadratic form
of the Mises - Hencky yield condition. The new proczdure has recently been
enhanced by the addition of two new algorithms. Thc. first guides the adjustment
of the assumed plastic zone as the optimization progresses; the second determines
the degree of satisfaction of the Kuhn - Tucker optimality conditions [13]. In
combination, these additions to the optimization procedure have significantly
increased the level of automation possible in conducting these analyses.
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The nonlinear optimization scheme performed well in numerical
experiments on simple problems with independently known exact solutions. The
first group of test problems was based on a model of a beam with a rectangular
cross section. Cases of pure bending and combined bending/tension were
examined. In the second group of experiments, the optimization scheme results
were compared with independent solutions of the problem of a thick-walled
cylinder subjected to internal pressure, axial load, and torsion singly and in
combination [11, 14 - 16]. All cases produced results of good quality, i.e., the
solutic,ns obtained by means of the optimization scheme converged rapidly to
the independent solutions within a few iterations and with modest spatial grid
refinement.

These test cases are the basis for an analysis of the rail problem, since the
discretization can be carried out on a two-dimensional grid in the rail cross
section. Figure 2(a) illustrates a typical result for the axial residual stress e.
computed for the AREA 132 lb/yd rail section. The figure shows only the rail
head, and stress contours are shown only in the regions where the stress is tensile.
This result, obtained in an earlier calculation [11], is in reasonable qualitative
agreement with measurements of axial residual stress in rails which have been
subjected to rail vehicle wheel loads, such as the example shown in Figure 2(b)
[17].

(a) Typical residual stress prediction for (b) Experimental stress measurements on
33-kip (147 kN) vertical wheel load. AREA 132 rail section exposed to service
Contours plotted at 2 ksi intervals, loading.

Figure 2. Comparison of predicted and measured residual stresses.
(Axial tensile stress contours shown.)

However, it has not been possible to make a direct quantitative comparison
between the idealized analyses and measurements of rail stress caused by train
traffic because of five factors which complicate the numerical modeling task.
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First, unlike the idealized single-line-of-travel assumption, railroad vehicle
wheels actually tend to wander laterally about an average center-of-contact
position on the rail, sometimes also producing two distinct contact regions. This
tends to laterally diffuse the residual stress as well (see Figure 2(b)). Second,
the magnittides of traffic loads can only be described in terms of probability
distributions because vehicle gross weights vary and the wheel loads are further
influenced by vehicle dynamics. Thus, the maximum applied load required as
input to the analysis cannot be specified with absolute certainty. Third, the
wheel/rail contact force usually has lateral and axial components in the running
surface tangent plane, as well as the normal component presently modeled. The
tangent force components can be included in principle, but one must first have
reliable values for their magnitudes and reliable solutions for the corresponding
elastic stress distributions. Fourth, the elastic stress distributions corresponding
to the normal contact force and rail bending are based on engineering
approximations, since the precise distributions are not known. Fifth, rail steel
exhibits considerable plastic strain hardening, unlike the elastic - perfectly
plastic material model presently assumed in the analysis. A sixth factor, the
stiffness of the track foundation, also defies precise modeling but appears to have
little effect on rail residual stress.

While residual stress predictions thus cannot be directly compared with
measurements on rails taken from service, they can be compared with the results
of well controlled full scale laboratory experiments. Such experiments are now
in progress at the Central Research Institute of the Polish State Railways [18).
A special-purpose fixture applies repeated rolling contact loads to samples of
unusedrail of UIC-60 section, with the load magnitude and line of travel precisely
controlled. In the initial experiments, the wheel travels along the rail crown in
pure rolling motion (no tangent forces), and the rail base rests directly on a heavy
steel bed to suppress foundation flexibility effects. After the loading program
is completed, these samples will be destructively sectioned following a procedure
similar to that described in [6] in order to measured the residual stress distribution.

Of the five factors described above which complicate this modeling task,
the first three are precisely controlled in the experiment, and can be adequately
duplicated in the analytical approach. Thus, the only aspects of the experiment
not precisely modeled in the present analysis are the contact pressure and stress
distributions and the strain hardening property of the rail steel. The effects of
foundation flexibility, eccentric line of travel, and loading with tangent
components are to be introduced in later experiments.
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Results and Discussion

A model used to calculate residual stress fields must account for these same
factors. In addition, selection of a mesh and representation of the elastic stress
field are extra considerations that influence the accuracy of the estimate when a
numerical procedure is implemented.

Control of load position, magnitude and direction equal to that in a
laboratory experiment is routine for the numerical model. Matching the material
properties and contact patch that exist in a test is more challenging. It was
mentioned earlier that a flow stress equal to the yield strength of new rail is
assumed to obtain an elastic - perfectly plastic model which is a rough
compromise for the actual cyclic stress-strain diagram for rail steel. No such
rationalization is possible to account for the uncertainties in estimating the
geometry of the contact zone. A calibration of the analytical solution to the
results of the experiments must be made to properly adjust the assumed
dimensions of the patch.

The goal of this study is to examine the unique factors introduced by the
implementation of the numerical calculation so that a procedure can be defined
to compare the analytical estimates with strain gauge readings taken during the
experiments.

The elastic stress distribution used in this work is obtained by superposition
of a beam on elastic foundation representation of the rail in bending [3] and the
stress resulting from contact. Questions have been raised about the validity of
the beam representation, particularly in a situation where the foundation is very
stiff, the circumstance of the current experiments. To investigate the validity of
the numerical approach used to compute the elastic field which serves as input
to the nonlinear optimization problem, a quarter-symmetric three-dimensional
finite element model of the UIC-60 rail section was developed from the
two-dimensional model used in the residual stress analysis shown in Figure 2(a).
The three-dimensional model was constructed by extruding the two-dimensional
grid to a length of approximately eighteen inches in the z-direction, resulting in
a model consisting of 1645 elements and 1850 nodes. The calculation was
performed using the NIKE3D code. The experiments in Warsaw take place on
an extremely stiff foundation which eliminates the beam on elastic foundation
effects, thus permitting the comparison with this simple finite element model
since three-dimensional wave effects at relatively long distances from the load
application point do not exist.

The resultsof this comparison indicate that the empirical estimates appear
reasonable. It is also suggested by these results that the softer foundation which
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exists beneath rails in service should not have a strong effect on the predictions
of residual stress, since the stress distribution in the railhead is dominated by
contact stresses.

Previous experience has identified difficulties in characterizing these
analytical predictions in terms of a single scalar indicator, such as the maximum
axial residual stress predicted at a single nodal location [11]. Two issues are of
interest here. First, a measure of the maximum axial residual stress in the tensile
zone is desired because of its importance in fatigue crack growth calculations
(see Figure 1). Second, selection of nodal locations that are coincident with the
maximum value of any stress component a priori is nearly impossible. The
dependency of the predictions of the analytical model on the mesh used in the
analysis is evident in Figure 3, which shows contour plots of the distribution of
axial residual stress in the plane of the cross-section and a composite plot of the
distributions along the vertical centerline of the rail for three different meshes.
All results in Figure 3 are for a 33.12-kip vertical wheel load which is the load
level to be used in the first series of experiments at the Railway Institute in
Warsaw.

From the point of view of railroad operations, the most interesting effect
on residual stress is the magnitude of the wheel load imposed. Empty cars (low
wheel loads) cause very little plasticity and low levels of residual stress, while
increased wheel loads show a substantial rise in the amount of residual stress
imparted to the rail head. In the analytical procedure used here, increasing the
wheel load results in an increased number of elements in the assumed plastic
zone, and a proportionate number of decision variables in the nonlinear
optimization problem. Higher loads used with meshes with many elements are
likely to pose computational challenges.

The meshes depicted in Figure 3 were used in calculations with several
different loads as listed in Table 1. As can be seen in the table, calculations were
made at load levels from 10 to 50 kips, with at least two meshes for each load.
Peak vertical wheel loads in excess of 50 kips are not uncommon in North
American railroad operations. Dynamic amplification factors up to 3.3 have
been recorded in experiments on the Northeast Corridor. Mesh C (the finest of
the three under consideration) has been used at each load level except for the
50-kip case in which Meshes A and B were used in the calculation.
Computational difficulties associated with large numbers of decision variables,
were experienced during the course of the 50-kip calculation with Mesh C.
Generally, the finest mesh used predicted the maximum value of axial residual
stress.
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As seen in Figure 3(d), the single nodal value representing the maximum
(or minimum) will be extremely sensitive to the strong gradient of axial residual
stress as well as the location of the extreme value. This leads to the conclusion
that any given mesh may not be capable of capturing the true peak magnitude
of a stress component. The proximity of a node to the peak stress location is
thus as important as the mesh density. Therefore, we have chosen to operate
with a fixed mesh, in spite of the fact that it may not produce a consistent
maximum. To compensate for this weakness, we have also chosen to use an
averaged measure as explained below.

Contours plotted at 1 ksi intervals.
(a) Mesh A: (b) Mesh B: (c) Mesh C:

412 elements; 474 nodes. 768 elements; 849 nodes. 1248 elements; 1351 nodes.
Nodal maximum: 4.1 ksi. Nodal maximum: 8.1 ksi. Nodal maximum: 7.7 ksi.
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(d) Distributions of axial residual stress along vertical centerline.

Figure 3. Distributions of axial residual stress in UIC-60 rail head for three mesh densities.
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Table 1. Load levels and meshes used in current study.

VERTICAL MESHES USED
LOAD (kips)

10 B,C

20 A,B, C

27 B, C

30 A,B,C

33.12 A, B, C

38 B, C

40 A,B, C

44 B, C

50 A, B

Since coordination of these predictions with experimental measurements is

a primary objective of this study, averaging of nodal numerical values over a

defined area is a sensible means to address this dependency on mesh construction.

Actual occurrences of highly localized peaks predicted by the analytical method

would be suppressed by the averaging inherent in measurements made over a

finite physical length of a transducer such as a strain gauge. This consideration

is the basis for adopting a 0.175-inch by 0.090-inch area, equal to that of the

gauges used in the experiments, as the averaging region. Nine points, one at the

node located at the local maximum, the others at the corners and mid-sides of

the rectangular area superposed on the finite element mesh (as shown in Figure

4), are used in the calculation. The values at these locations are linearly

interpolated from the stresses calculated at the four adjacent mesh nodes. The

weighted sum of the point values is the average stress over the area occupied by

this fictitious "gauge."
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finite element mesh
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Numbers indicate 'Weight" at each averaging point.

Figure 4. Schematic of strain gauge averaging procedure.
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VERTICAL WHEEL LOAD (kips)

Figure 5. Strain gauge averaging procedure applied to analytical results.

Figure 5 illustrates the results for the cases listed in Table 1, after application
of the averaging procedure. Each point in the Figure represents the highest nodal
average computed for calculations performed with Mesh B or C at each load
level. The trend displayed in the figure does not clearly indicate either saturation
(leveling off) or a continued increase. However, it is clear from this data that
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wheel load magnitude has a significant effect on the axial residual stress present
in the rail, whose value increases from approximately 0.2 ksi at 10 kips to over
10 ksi at 50 kips. The area of residual tension remaining in the rail head at 50
kips has grown as well. (Note that the 2-ksi contour for the 50-kip load in Figure
6(a) encloses an area larger than any of the areas enclosed by the 1-ksi contours
in Figure 3(a, b, c) for 33.12 kips.)

Figure 6(b) is a plot of the axial residual stress distribution along the vertical
centerline for the 50-kip case. Comparison of this plot with Figure 3(d) suggests
that artificial strain gauge average must be interpreted with some care. In
particular, it appears that the average is depressed by the strong stress gradient
in those cases for which the applied load is less than 40 kips. Conversely, the
nodal maximum and the area average may be nearly equal at higher loads.

VER7ICAL DISTANCE ALONG CENTERLINE (inches)

68

56

-40 .30 -20 .10 0 -0-20 30

AXIAL RESIDUAL STRESS (ksi)

(a) Axial residual stress distribution. (b) Vertical distribution of axial residual
Contours plotted at 2 ksi intervals. stress along centerline.

Figure 6. Results for 50-kip load on UIC-60 rail section.

The actual pressure distribution to which the rail is subjected is dependent
on a variety of location-specific variables. Variations in wheel tread profile and
rail head geometry caused by wear can significantly alter the shape and position
of the contact zone. Previous studies of wheel/rail contact have provided
sufficient data to support the premise that many distributions are possible [ 19].

The most common estimate of the contact area and pressure distribution
used in wheel/rail interaction models is elastic Hertz contact, idealized as anelliptic contact patch created by imposing a vertical load on a pair of crossed
cylinders as shown in Figure 7(a). This approximation cannot possibly accountfor all details of field conditions, since there is no provisicia for transmission of
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tangential loads. Also, experimental evidence [19] indicates that the actual
contact area is more nearly rectangular than elliptic and that the maximum contact
pressure is often lower than the Hertzian prediction.

MAXIMUM

RPRESS URE, PO

-.. .- - -R -- - AIL CROSS-SEC TION

28'

- - CONTACTPATCH-

(a) Schematic of elastic Hertz contact. (b) Translation to wheel/rail contact.

Figure 7. Contact pressure distribution characterization.

The analytical representation of contact stresses in the elastic solution used
in the present work is based on a Green's function approach which uses a
Boussinesq point load that allows adaptation of the solution to an arbitrarily
selected patch. For simplicity, a bi-parabolic pressure distribution applied to a
rectangular area of the rail surface was assumed to simulate wheel/rail contact
as depicted in Figure 7(b). For each wheel load considered, a Hertz
crossed-cylinder calculation was performed to determine a maximum pressure,
p,,,,,, and the dimensions of the contact ellipse, a and b, as shown in Figure 7(a).
The size of the corresponding rectangular patch, 2a' x 2b', was set by scaling
the dimensions of the calculated ellipse to make the maximum pressure in the
bi-parabolic distribution, p,, equal to p,,,.

It is interesting to observe the effect on the residual stress predictions of
variations in the dimensions of the contact rectangle. Figure 8 illustrates three
results obtained by applying the static 33.12-kip wheel load over contact patches
of varying size. The simplest measure of the resulting load intensity is found by
normalizing the maximum pressure at the center of contact (p P) by the material
yield strength in shear (k). For rail steel, the parameter k is approximately 40.5
ksi. The residual stress value at each of these points is that obtained after
averaging as described above. The sensitivity of the maximum axial residual
stress prediction is clearly seen from this plot. The value of p0 / k was varied
from a minimum of 4.5 to a maximum of 5.84 by adjusting the dimensions of
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the contact patch. It is also interesting to note that these extremes are comparable
to those for the minimum and maximum loads used in this study. (For a 20-kip
wheel load, p0 / k is 4.24; at 50 kips, p0 / k is 5.77.)

MAXIMUM AXIAL RESIDUAL STRESS (ksi)
12

0 33-kip vertical 50-kip
wheel load wheel load10 .................................................................................. .A-.......

mesh C 0
"strain gauge" averages

8 -.--------------- ------------------------------------------------------------------------- ----------------------- --------

6 ............................... ... ....... .... 0 - .. ........... . ........... ...............

4 - .......................................................... ............... ...............

wheel load
0 I I

4 4.5 5 5!5 6
Po/k
p0 I

Figure 8. Avial residual stress predictions fio 33-kip vertical wheel load distributed over
contact zones of varying size.

Concluding remarks

If our calculation procedure is truly capable of replicating the experimental
results, then it should be possible to match a data point from Figure 8 to the
maximum axial residual stress measured in the experiments conducted at the
same load, which will indicate the apparent value of po/k which was imposed
during the programmed loading. One possible means of checking this hypothesis
would be to estimate the contact zone size by measuring its apparent width on
a sample of rail in the loading fixture. As it becomes available, this information
will permit modifications to the procedure used to model the size of the contact
patch.

These results have substantially increased our confidence in quantitative
predictions of residual stress in bodies as complicated as loaded rails. It is obvious
that further work is needed to establish criteria for relating mesh characteristics
to the accuracy of a solution. However, the current approach of checking results
with multiple meshes is adequate to proceed with a systematic investigation of
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the influence of operational factors on residual stress levels. Sensitivity to
assumed values of flow stress and to variation of the point of load application
are logical candidates for the next investigation.

By coordinating the use of the nonlinear optimization scheme in parallel
with a series of increasingly complex experiments, we hope to establish
quantitative confidence in the software in an orderly manner, refining one or two
aspects of the model at each stage, as needed. The completed model will then
be a valuable tool for interpreting the results of measurements on rails taken from
service and for evaluating the extent to which rail vehicle weights can be
increased to improve railroad productivity.
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Introduction

In the past, the commuter aircraft were designed in accordance with
safe-life fatigue calculations as a life estimation method. A group of
experts in the aircraft industries has recently suggested that commuter
airplanes should be inspected based on damage tolerance criteria. The
commuter aircraft manufacturers, however, lack funding and resources
to perform detailed damage tolerance assessments. As part of the
Federal Aviation Administration's (FAA's) Continued Airworthiness
Research Program, the Volpe National Transportation Systems Center
(VNTSC) is developing simplified damage tolerance estimation methods
applicable to commuter airplanes. One of the tasks was to perform life
calculations for the wing spar of a light weight twin engine airplane.

In November 1990, VNTSC presented the method being developed,
together with preliminary results. Table 1 lists life estimates for the twin
engine airplane wing spar, and the method of calculation used. The first
four entries in the table are based on "safe life" fatigue calculations. The
values for the Australian CAA and the British CAA have been established
as life limits for the same model of airplane operating in those countries.
The factored lives are listed in Table 1, but the scatter factors and
unfactored lives are unavailable. The last entry in the table was based
on the present damage tolerance approach, described in Section 4.

At the November meeting, the industry experts raised two concerns
about the damage tolerance calculations. The first concern was the
validity of the crack growth rate (da/dN) data used, which was taken from
the 1975 Battelle Damage Tolerant Design Handbook [1]. The group
considered the 1975 data inaccurate because it was reduced using the
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secant method rather than the currently accepted incremental polyno,
mial method. The second concern was the accuracy of the analytical
method, compared with a block spectrum computation method.

Table 1. Summary of life calculations
for the light weight twin engine wing spar.

Unfactored Scatter Factored life
life (hours) factor (hours)

Australian CAA safe life - 13,000

British CAA safe life - - 8,500

Manufacturer's safe life 65,000 5 13,000
aircraft report

VNTSC safe life 31,000 to 3 10,300 to
40,000 13,000

VNTSC damage slow crack 22,850 2 11,425
tolerance growth life

Fatigue (safe-life) calculations

The fatigue calculations are based on the method given in [2] and
on the example presented by Nauert and Campbell [3] for safe-life
evaluation of general aviation airplanes. The analysis was performed
assuming a 1-g stress level of 7288 psi, which was obtained from a report
produced by the manufacturer of the airplane. The material was assumed
to be aluminum 2024-T3 sheet.

The typical mission for the airplane was assumed to have a cruise
velocity of 175 mph, and flights of 80 minutes each, or 0.75 flights per
hour. As specified in the Federal Aviation Regulations [4], the incre-
mental limit load factor, anLLF is 2.5 for gust and +2.8 and -2.52 for
maneuvers. The incremental limit load factor represents a normal
acceleration (in g's); steady level flight, or "1-g flight", is represented by
anLLF of zero.

The fatigue life was calculated using Miner's Rule. The fatigue
damage per hour is due to gusts, maneuvers, and the Ground-Air-Ground
(GAG) cycle. Damage due to landing and taxiing were assumed to be
negligible. The inverse of the total damage per hour is the fatigue life,
in ours.
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The procedure for calculating fatigue damage is the same for gusts
and maneuvers, but the two load exceedance curves are different. The
exceedance curves were taken from reference [2], for general-usage
twin-engine aircraft, and are reproduced in Figure 1. These curves give
cumulative exceedances per nautical mile, as a function of acceleration
fraction, an/anLLF. Each curve was converted to a table of exceedances
per hour. The lowest load in thetable is approximately equivalent to the
stress amplitude for N = 3 x 10' cycles, the lowest stress amplitude for
which results are plotted on the 2024-73 S-N curves in MIL-HDBK-5E
[5]. The load increments are somewhat arbitrary, but following the
example calculation by Nauert and Campbell [3], increments of 0.06 in
an/anLiF were used. The positive and negative load exceedances which
occur with the same frequency were combined to obtain stress levels
(Smin, Smax).
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Figure 1. Exceedance curves for general-usage twin-engine aircraft.
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For each stress level, the fatigue life in cycles, N, was found from the
S-N curves for 2024-T3 sheet. A stress concentration factor of Kt = 5.0
was assumed, as being a fatigue quality typical in small airplane con-
struction. Finally, the damage per hour for gusts and for maneuvers were
calculated using Miner's Rule:

where: D = Fatigue damage per hour
ni = Occurrences per hour of stress level i
Ni Fatigue life (cycles) for stress level i

The maximum stress in the GAG cycle is the maximum stress with
a total frequency of once per flight. The total frequency for a given stress
level is its frequency of occurring in the gust spectrum, plus its frequency
of occurring in the maneuver spectrum. The minimum stress in the GAG
cycle was taken to be zero, since landing and taxiing loads were neglected.
The fatigue life in cycles, N, for the GAG cycle was read from the S-N
curves. The GAG damage is 1/N, converted to damage per hour by
multiplying by 0.75 flights per hour.

The total fatigue damage per hour was obtained by summing the
damage due to gusts, maneuver, and the GAG cycle. The unfactored
fatigue life is the inverse of the total fatigue damage:

Dtotc, = DG + DR + DCAG (2)

1
Unfactored Life= 1 (3)D tolcl,

Unfactored Life
Factored Life= (4)

Scatter Factor

where: Dtotal = total fatigue damage per hour
DG = damage per hour due to gusts
DM = damage per hour due to maneuvers
DGAG = damage per hour due to GAG cycle

Reference [2] states that a scatter factor between 3 and 8 should be
applied to the unfactored life. For the present analysis, a scatter factor
of 3.0 was chosen, since using the fatigue data for Kt = 5.0 was conser-
vative. The factored fatigue life is 10,300 hours to 13,000 hours,
depending on the accuracy of reading the S-N curves.
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Crack growth rate data

The primary sources of publicly available crack growth rate data are
the 1975 Battelle Damage Tolerant Design Handbook [1], and the 1983
Battelle Damage Tolerant Design Handbook [6]. Two additional sets of
data were considered: data obtained by private communication with Mr.
Thomas Swift of the FAA, and data obtained from Prof. Regis Pelloux
of MIT as part of the Continued Airworthiness Research Program. In
all cases, the data were for 2024-T3 aluminum alloy, which is a material
commonly used in airplanes.

A line corresponding to a Walker type equation was fitted to each
set of data:

da (AK)-(
dN (1-R)

where C = Crack growth rate constant
m = Crack growth rate exponent
K = Stress intensity factor
R = Stress ratio

A crack growth rate exponent of four was used for all cases, which
is common practice for aluminum alloys. Since the data are plotted on
a logarithmic scale, this equation becomes a straight line with slope of 4,
the osition of the line determined by R and C. For the data from Mr.
Swift, MIT, and the 1983 Handbook, a constant of C = 4 x 10"10
in ./cyc(ksi1iin. )' provided a reasonable fit. However, the constant

C for the data from the 1975 handbook ranged from 0.625 x 10-10 to 4.02
x 10-1 , as shown in Table 2. For calculations using the 1975 handbook,
a constant of C = 2.5 x 10-10 was chosen as a representative, somewhat
conservative, value. This value is lower than the value for the other three
sources by a factor of 1.6.

The data from the 1975 handbook were assembled from a large
number of tests performed independently by different researchers. The
1983 handbook contains a much smaller sample size; for alclad 2024-T3,
it contains only two of the 12 graphs from the 1975 handbook. It is unclear
on what basis those particular graphs were selected for inclusion in the
updated handbook, while the other graphs were omitted.
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Table 2 Summary of crack growth rate constants
from 1975 handbook for 2024-T3 clad aluminum.

Stress ratio, R 1010 C 1010 C
t = 0.90" t 0.125"

-1.0 0.625

0.0 2.5 1.56
1.9

0.05 1.9

0.1 1.095

0.33 4.02
2.615

0.5 2.5

0.7 2.315

Several possible explanations exist for the range of crack growth rate
constants in the 1975 Handbook. First, specimens that are nominally the
same alloy, but were produced in different batches or by different
manufacturers, may exhibit different crack growth behavior. Also, the
improvements in metal production and processing that have been made
over time may mean that a batch of metal produced one year would have
somewhat different characteristics from a batch produced several years
later.

Another possible source of apparent differences in crack growth
rates is the method used to reduce the crack growth data (a vs. N) to rate
data (da/dN vs. A K). Most of the data in the 1975 Handbook were
reduced using the secant method, which approximates the crack growth
curve by a series of straight lines connecting the data points. The crack
growth rate is the slope of the line connecting two adjacent points,
determined by dividing the change in crack length by the number of cycles
it took to grow that distance. The stress intensity factor is computed using
the average crack length. Thus, if the crack length is al at N 1 cycles, and
subsequently grows to a2 at N2 cycles:

dci Aa _a 2 -a 1-a A 1- a (6)
dN AN N 2 -N 1  (

al + a 2 (7)
2

K = K (a ) (8)
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Using the secant method can lead to scatter in the rate data. The
n-point incremental polynomial method [7] of data reduction tends to
minimize scatter in the computed rate data. This method uses the least
square error technique to fit a parabola to sets of n successive data points,
where n is 3, 5, 7, or 9. The crack growth rate is taken as the derivative
of the parabolic function, computed at the data point in the middle of
the set.

To evaluate the difference between the data reduction methods, the
crack growth data obtained from MIT was reduced using both the secant
method and the 7-point incremental polynomial method. The data were
from center-cracked panels, tested in constant-amplitude loading at
different stress ratios. The secant method does lead to more scatter in
the rate data than the seven-point method. However, the reduction
method does not significantly change the position of the curve. This is
illustrated in Figure 2, in which the Walker equation with a constant C
= 4.0 x 10-10 is fitted to curves generated by the two methods. In this
case, the test specimens were from the same batch of aluminum, so data
scatter due to material variability is at a minimum.

0.000010

0 Test 1 (R=0.05)

DA/DN (In./Cyc.) A Test 2 (R=0.8)

-- 4E-10 DKA4 /0.95LA, ] _ 4E-10 DK^A4/0.2

t 1A-4'

0.000001.

0.000000 / 110
110 100

Delta K (KSI'IN"(1/2))

Figure 2a. Test data for secant method with Walker equation.
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Figure 2b. Test data for seven-point method with Walker equation.

As can be seen from Figure 2, the chosen rate equation fits the
average of the secant method data as well as it fits the polynomial method
data. Therefore, one can conclude that the secant method yields the
same average da/dN as the polynomial method, i.e., a difference in data
reduction method alone can not explain the wide range of crack growth
rate constants in the 1975 Handbook. Since the data sample size in the
1983 Handbook is limited, and appears to be a subset of the data from
the 1975 Handbook, there is no way to determine which set of data (and
hence which crack growth rate constant) is most applicable to the
materials used in older airplanes.

Damage tolerance calculations

Damage tolerance calculations for the light weight twin engine wing
spar were made for the assumed crack growth sequence shown in Figure
3. Two initial cracks are located at a non-load-bearing fastener hole in
the spar cap. The .05 inch crack is a standard assumed "rogue" man-
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ufacturing defect size for a corner crack. The .005 inch crack represents
an average quality defect. The first stage of crack growth life, where the
.05 inch crack grows through the wing spar thickness and at the same time
the .005 inch crack grows to a .015 inch crack, is calculated with the stress
intensity factor for comer cracks at hole [8]. The second stage, where
the through crack is growing toward one edge of the cap and the .015
inch crack grows to a .018 inch crack, is calculated with stress intensity
factor for a crack emanating from a hole in rectangular plate [9]. The
third stage, where the .018 inch crack grows to a through crack, is cal-
culated with the stress intensity factor for comer cracks at hole, with the
applied stress increased by a net section magnification factor to account
for the reduced load-carrying area. The final stape, where the through
crack grows to failure of the cap, is calculated with the stress intensity
factor for a single edge crack [9].

ASSUMED CRACK AD HOC
GROWTH SEQUENCE APPROXIMATIONS

.005' 05..25'.

FE1.75'
.125" .688"

stage 1
.015

stage 2/
- / /

stage 3 .25'

NET SECTION
I _MAGNIFICATION

stage 4

Figure 3. Stages of assumed crack growth sequence.
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One of the questions raised by the industry group concerned the
treatment of the basic crack growth rate data for life calculation. It was
suggested that the accuracy of the calculation would be improved if data
reduced by the polynomial method were used in tabular form, with rates
interpolated for intermediate A K and R values.

This question was studied by using Mr. Swift's data, which was
available in tabular form, and by comparing with calculations based on
the curve-fitted equation (5), with C = 4 x 10-1u and m = 4. The da/dN
values calculated with the crack growth rate equation for the corner crack
at the hole geometry were compared to the da/dN values interpolated
from the tabular data for each stress range of the spectrum. The com-
parisons were made for crack sizes of .02, .05,.15, and .25 inch, load with
and without net section magnification factor as described above, and
stresses with and without R-truncation. (R-truncation means that the
crack growth rate is calculated with Smin = 0 for any cycle in which R - a)
Typical comparisons for crack size of .05 inch are shown in Figure 4.
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Figure 4a. Comparison of DA/DN values,
(ao =.05, without net section magnification, with R-truncation).
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Figure 4b. Comparison of DA/DN values,
(ao =.05, with net section magnification, with R-truncation).

Figure 4a corresponds to the most frequently occurring loads in the
spectrum and indicates agreement between the two methods for calcu-
lating the crack growth rates. Figure 4b indicates that the curve-fit
estimates exceed the interpolated values at high growth rates, but these
points correspond to infrequently occurring loads and should thus have
little effect on the spectrum life estimate. The crack growth rates com-
puted from the da/dN equation were also found to be more conservative
for the larger crack sizes, but again, this should have only a small effect
on the life estimate.

A comparative life calculation for the wing spar was done by using
the block-spectrum computation method and interpolating the da/dN
values from Mr. Swift's tables. All cycles per flight were "blocked" into
groups of common range and ratio. The rate table was then used to
project the increment and updated crack length per block. Due to the
time-consuming nature of the block-spectrum calculation, only the first
stage of the assumed crack growth sequence was treated. (However, this
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stage is more than two thirds of the entire crack growth life.) Two
block-spectrum calculations were made, giving unfactored lives of 9,986
hours with R-truncation and 9,906 hours without R-truncation.

The rapid analysis method used in the present study is based on an
application of Miner's rule to cases in which load interaction effects can
be neglected [10]. The original rapid analysis ptesented in 1990, was
based on the Walker equation with C = 2.5 x 10-Yu rather than 4 x 10 -lu
and gave 16,082 hours as the unfactored life for the first stage shown in
Figure 3. To put this analysis on the same basis as the block-spectrum
computation method requires only division of the result by the factor of
1.6, which is the factor between the two crack growth rate constants. This
leads to a rapid estimate (no R-truncation) of 10,051 hours, i.e., only 145
hours (1 percent) more than the block-spectrum computation method.

The rapid estimate for total damage tolerance life with a crack
growth rate constant of 4.0 x 10-10, corresponding to the recent material
data, is also obtained by means of scaling. Table 3 includes this result in
the comparison with the other life estimates. The revised damage tol-
erance life is shorter than the fatigue safe lives, although it is comparable
to the most conservatively estimated safe life.

Table 3. Updated summary of life calculations
for the light weight twin engine wing spar.

Unfactored Scatter Factored life
life (hours) factor (hours)

Australian CAA safe life 13,000

British CAA safe life - - 8,500

Manufacturer's safe life 65,000 5 13,000
aircraft report I

VNTSC safe life 31,000 to 3 10,300 to
1 40,000 13,000

VNTSC damage slow crack 22,850 2 11,425
tolerance 1 growth life
C = 2.5 x 10-10

VNTSC damage slow crack 14,281 2 7,140
tolerance 2 growth life
C = 4.0 x 10-10
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Conclusions

Damage tolerance life is lower than fatipue life when the more
conservative crack growth rate is assumed, but is still comparable to the
most conservative fatigue life estimate. Fitting crack growth rate data
carefully with a Walker equation and then using the rapid calculation
method is suitably accurate, compared with interpolation of tabular rate
data and with block spectrum computation.

The choice of crack growth rate constant in the Walker equation
greatly affects the calculated life. The data presented in the 1975
Handbook contain a wide range of growth rate constants. However, this
variation cannot be attributed to the use of the secant method to reduce
the data. The data in the 1983 Handbook is more consistent with other
recent but unpublished data. However, the sample size is much smaller
than for the 1975 data. Therefore, there is no basis for judging whether
the old or new published data better represents the older material which
would be found in aging commuter aircraft.
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DEVELOPMENT OF A FATIGUE LIFE INDICATION SYSTEM

Gopal Samavedam
Douglas Thomson

Foster-Miller, Inc., Waltham, Massachusetts 02154

Brian Hornbeck
USA Belvoir, RD&E Center, Fort Belvoir, VA 22060-5606

A new fatigue monitoring device which is suitable for use on mobile Army bridges
has been developed by Foster-Miller, Inc. and is being evaluated by the Belvoir
RD&E Center. This device is comprised of two thin metal "pre-cracked" coupons
made from different materials which are directly attached to the bridge tension
member. The crack growth in the twin coupons is used to resolve the bridge
loading histogram. This definition of the stress levels and cycles experienced by
the bridge permits calculation of the useful fatigue life consumed. As mobile
military bridges typically experience varied and undefined loading, this indicator
has the potential to provide service life information not currently available.

Several existing fatigue indicators are not suitable for application on mobile Army
bridges. Electronic strain gauge type devices, while they should inherently be the
most accurate, are expensive, require constant power, and often suffer from long-
term stability problems. Mechanical recording devices are also expensive and
complex and most require specialized machinery and personnel for readings. Plain
or notched coupons are dependent on the phenomenon of crack initiation which is
well documented to display high scatter. This scatter results in unacceptable
margins of error for this low cycle fatigue application. Single pre-cracked
coupons, while based on the same stable crack growth concept as the FLI, cannot
indicate the loading histogram. Their life calculations are based on a laboratory
developed empirical relationship which is only valid at the coupon attachment area.
While each of these indicating systems may have useful applications, the FLI is
clearly the best suited for use on mobile bridges.

Theoretical Basis

Crack propagation in metals can be defined by the Paris Crack Law:

da/dN = CAKn (1)

where:

AK = P3Acy(ia)1/ 2  (2)
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where:

a is the half crack length, Aa is the applied stress cycle, da/dN is the half crack
growth rate per number of cycles (N), 03 is a shape factor to account for finite
geometry, and C and n are material constants. Initial tests were conducted to
define the material constants for the two coupon materials. The Paris Crack Law
for a infinite plate (03 = 1), was found to fit well to the laboratory crack propagation
data. The material constants (C,n) were defined for each of the coupon materials
by this fit. The 606 l-T6 coupon required a bi-linear fit. This characteristic is
consistent with the published data.

Since the cracks in the two dissimilar coupons will grow at different rates due to
their different material constants (C,n), the two crack lengths can be compared and
the loading histograms deduced. Integration of the Paris Crack Law yields the
following equation.

1 -n/2 1 -n/2a -a.
N-

c~/ n/2
c ( n E n 2 ( 1- n /2 ) (3 )

Since the two coupons are attached such that they experience the same number of
cycles (N) and the same magnitude of stress cycle (Ac), this equation can be
rearranged to deduce the stress cycle from the final crack lengths (af) while
knowing the initial crack lengths (ai) for the two coupons (1 and 2). The
following equation defines the stress cycle.

1

n -n
1 2

C n__ 1 n [a 2 1 a1 1

2 22

1-
c TC2 n 1 a22 a222 2

(4)

190



This equation demonstrates the need for two coupons of different materials as n1
and n2 must not be equal.

A basic computer program was written to deduce the loading history based on the
two crack lengths. The program written uses the initial and final crack lengths to
calculate the stress cycle using Equation 4. Due to the bi-linear fit of the 6061-T6
data, an iterative program was required to determine the transition point of the fit.
This point was defined when the calculated stresses were equal for the two linear
regions. The total number of cycles at this stress level is then calculated using
Equation 3. The stress cycle and number of cycles are the output of this program.

Laboratory Proof-of-Concept

The Fatigue Life Indicator (FLI) system was developed and demonstrated in
numerous laboratory tests. A method was developed for fabrication of the
coupons which included precracking of the coupons at a low stress level of 15 Ksi
to avoid crack retardation at the operational levels of the AVLB. Optical crack
measurement was found to have sufficient resolution under laboratory conditions.

A test assembly was designed with the two FLI coupons attached to a
representative bridge structure using a bolted attachment, as shown in Figure 1.
Tests were first conducted to define the Paris Crack Law constants C and n. Four
assemblies were then tested to verify the operation of the system in the laboratory.
As shown in Table 1 and Figure 2, the agreement of the applied test loads and
cycles with the computer prediction is very good. The one problem that did
surface in Assemblies H and I was that precracking at a higher stress level can
cause retardation of crack growth. This problem was corrected for Assemblies J
and K. Some growth retardation was still observed in the multiple stress level
histogram of Assembly K. However, in an actual FLI application, the structure
being monitored may experience similar damage retardation due to spectrum
loading. Also, further laboratory and field testing of this system may allow
development of data corrections for these phenomena. Based on the data from
these tests, the system was considered to be functional in the laboratory with need
of further laboratory development and field proof-of-concept.

Field Proof-of-Concept

Two sets of Fatigue Life Indicator coupons were attached to each of two Armored
Vehicle Launched Bridges (AVLB) at Ft. Belvoir, VA. Two sets were prepared
for a standard useful life of 10,000 cycles. Two sets were cycled to longer initial
crack lengths for a target useful life of 2000 cycles to provide greater accuracy
during the planned field tests. One set of each type was attached to each of the
bridges.
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Figure 1. FLI Test Facility

The coupon sets were mounted to the AVLBs using the bolted doubler plate
attachment method. Individual coupons of a set were mounted to the bottom
flange of the bridge tension chord on opposite sides of the center hinge at an end
location 41 in. from the center pin. The coupons were then sealed with silicone to
prevent moisture and dirt penetration.

The two ALVBs were transported to Aberdeen Proving Ground (APG) and tested for
a total of 2000 crossings under several loading conditions. Table 2 summarizes the
three intervals for which data was collected and analyzed. For these intervals,
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Table 1. Test Results versus Predictions

Test Results Predictions
Assembly Cycles Stress (Ksi) Cycles Stress (Ksi)

H 0 20.0
2,000 20.0
4,000 20.0 400 37.1
6,000 20.0 900 31.9

0 25.0
500 25.0 500 29.5

1,000 25.0 1,200 26.3
1,500 25.0 2,300 24.3
2,000 25.0 2,700 24.8
2,500 25.0 3,500 24.7
3,000 25.0 3,800 25.5

0 20.0
2,000 20.0
4,000 20.0 300 38.0
6,000 20.0 1,300 29.2

0 25.0
1,000 25.0 1,200 23.6
1,500 25.0 1,700 23.7
2,000 25.0 2,400 23.1
2,500 25.0 3,100 23.2
3,000 25.0 4,000 22.6
3,500 25.0 5,900 21.5
4,000 25.0 6,500 21.9
4,500 25.0 7,300 22.5

0 17.0
2,000 17.0 1,500 18.4
4,000 17.0 3,300 17.8
5,200 17.0 4,300 17.9
6,000 17.0 4,700 18.1
7,000 17.0 5,700 17.9
8,000 17.0 6,800 17.7
9,065 17.0 7,900 17.6

10,000 17.0 8,900 17.4
11,000 17.0 9,800 17.5
12,000 17.0 11,000 17.3
13,000 17.0 12,000 17.3
14,000 17.0 13,100 17.3
15,000 17.0 14,400 17.4

K 0 20.0
2,000 20.0 2,220 20.4
4,000 20.0 4,000 20.0
6,000 20.0 7,000 18.9
6,500 25.0 7,500 26.4
7,000 25.0 8,300 24.7

1 7,500 25.0 9,900 22.7

193



ASSEMBLY J

30

28 -

26 -

24 -

22 -

20 -

18 - 0 D 0 0) 0 0) n n 171

16 -

V) 14

12

< 10 -

8

6

4

2

0 LI I I I I I I I I I

0 2 4 6 8 10 12 14
(Thousonds)

Cycles

O FLI Histogram Coic - Applied Histogram

ASSEMBLY K

30

28 -

26 -0
0

24 -

22 -

20 - 0
0

18

16

14

12

"< 10

8
6-

4

2

0 I I
0 2 4 6 8 10

(Thousands)
Cycles

0 FLI Histogram Calc - Applied Histogram

Figure 2. Laboratory Test Results

194



Table 2. Field Proof-of-Concept Tests

Calculated Actual
Initial Final

Half Crack Half Crack
Coupon Length Length Stress Stress

Data Material (in.) (in.) Cycles (Ksi) Cycles (Ksi)

2024-T3 0.400 0.455
1 420 23.2 426 23.9

6061-T6 0.450 1.000

2024-T3 0.40 0.455
2 420 23.2 406 23.9

6061-T6 0.450 1.000

2024-T3 0.280 0.300
3 720 19.1 740 18.1

6061-T6 0.290 0.310

agreement with the actual crossings was excellent. However, coupon slippage
occurred and the bolted attachments needed repairs and readjustment. Thus, the
system has been successfully demonstrated in the field but further development is
required.

Laboratory System Development

Numerous development tests were conducted concurrent with the field tests to
improve system performance. The three target aspects for refinement were coupon
attachment, crack measurement and coupon size.

Coupon Attachment

The bolted attachment method requires damage to the bridge structure and also
risks coupon slippage. The development of an improved bonded attachment
method was the focus of this work. Five candidate adhesives were used to
fabricate small-scale test assemblies. More than 20 of these assemblies were
mechanically and thermally cycled to evaluate their strain transfer characteristics
and degradation as it applied to the FLI. Based on these tests, Tra-Bond 2143D
was selected for full-scale testing.

Full-scale FLI assemblies, shown in Figure 3, were fabricated to develop the
bonded attachment method and to evaluate alternative crack measurement
techniques. As shown by the results in Table 3 for one assembly, the FLI with a
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Figure 3. FLI Assembly with Bonded Attachment

bonded attachment properly indicates the cycles and a stress level equal to
80 percent of the applied stress. This reduction is consistent and results from the
lower modulus of the adhesive. Testing also indicated that complete bonding of
the coupon reduced the stress intensity factor at the crack tip and thus crack growth
was unacceptably retarded. These tests demonstrated that while bonding is a
preferable alternative to bolting, further development of the technique is required.

Crack Measurement

Three electronic crack measurement systems were considered to allow automated,
remote measurement. Extensive literature was reviewed on the AC Potential Drop
(ACPD) method. While it has been successfully utilized under controlled
laboratory conditions, the literature indicated that this method is too involved for
field use.
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Table 3. Results for FLI Assembly with Bonded Attachment

App lied Calculated

Cycles Stress Cycles Stress

0
1,300 20.0 1,000 16.4
3,000 20.0 2,400 17.3
4,000 20.0 4,100 17.0
5,000 20.0 5,550 16.2
6,600 20.0 6,500 16.5
8,000 20.0 7,800 16.5
9,000 20.0 9,100 16.1

10,000 20.0 9,700 16.1
12,000 20.0 11,700 15.8
13,000 20.0 12,400 15.7
14,000 20.0 13,700 15.4
15,000 20.0 14,700 15.3
16,000 20.0 15,200 15.3

Ladder gauges provide electronic crack growth measurement using microwires
which break as the crack propagates. Several of these gauges were tested in the
laboratory and compared to optical crack measurements. The results indicated that
some problems exist due to crack closure and stability during system disconnect.

Additionally, although these problems may be surmountable, these gauges have,
by design, a fairly low resolution due to their discreet measurement points.

The Krak Gage system provides crack growth measurement electronically using an
indirect DC potential drop method. A thin foil Krak-Gage is bonded directly to the
test specimen and the crack propagates through the gauge as it propagates through
the test specimen.

The change in the resistance of the gauge is precisely measured by a Fractomat data
acquisition device. This two-channel instrument contains precision constant
current sources for excitation as well as signal conditioners and amplifiers to
process the input. The two calculated crack lengths are displayed on the
instrument front panel. This system, which is in wide use in fatigue laboratories,
provides several significant advantages over the other crack measurement devices
which were tested.
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During the full-scale laboratory bonding tests, Krak Gages were applied for testing
of this measurement system. Two gauges were applied to each FLI coupon in
order to measure the total tip-to-tip crack length, as shown in Figure 4. The
gauges provided adequate data for system evaluation.

The Krak Gage tests successfully demonstrated several key aspects of system
performance. A comparison of the Krak Gage readout to precision optical
measurements made with a graduated microscope is presented as Figure 5.
Agreement was excellent with any error likely due to some difficulty in correctly
identifying the crack tip during optical measurement. Since the gauge itself is an
analog indicator, its resolution is dependent on the recording device. For the 30
mm gauges typically used in these tests, the minimum displayed resolution of the
Fractomat is 0.01 mm (0.0004 in.). The Fractomat also can display the peak
readout of the gauge to eliminate any error due to crack closure during cyclic
loading. Also, unlike the ladder gauges, which sometimes disbonded near the
crack tip, all of the Krak Gages tested remained fully bonded to the FLI coupons
through the duration of testing.

Four gauges of different crack lengths were tested statically to quantify the effects
of crack closure. The applied stress required to overcome closure was
proportional to the crack length. The error associated with crack closure may be

A
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Figure 4. Krak Gages
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significant with extremely small crack lengths. However, the stress due to the
dead weight of the bridge was sufficient to overcome closure effects in all but the
smallest cracks.

Throughout all testing, the Fractomat was connected to the gauges through
standard cannon plugs. These plugs were disconnected and reconnected at
numerous times throughout the testing. No errors were recorded due to these
actions. Since the system maintains a pre-set, constant current, changes in system
resistance were automatically compensated for and the output was not adversely
affected.

The system does have some disadvantages. The initial cost of the Fractomat data
acquisition system is relatively high (= $7,000). Standard 110 VAC power must
be available to operate the system when a reading is to be made. Also, the coupon
will be completely sealed from visual inspection of the cracks. However, this
system demonstrated superior performance among those evaluated.
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Figure 6. Reduced Size FLI Coupon

Coupon Size

Reduction of the FLI coupon size was the third goal of this program. One
assembly, shown in Figure 6, was tested using a substantially reduced coupon.
Smaller coupon size will permit application of the ELI to many other bridges and
structures. While this assembly test demonstrated that sufficient stable crack
growth can be achieved in the smaller coupons, additional testing is required to
quantify the effects of reduced coupon width on the crack growth rates.
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Concluding Remarks

The Twin Coupon Fatigue Life Indicator system has been successfully
demonstrated in numerous laboratory tests and the vehicle crossing tests on the
AVLB. The test results provided proof of the Twin Coupon concept.

The laboratory proof-of-concept tests defined a coupon manufacturing method and
the crack growth law constants. Further testing demonstrated that the computer
program will consistently indicate the loading history based solely on the two
measured crack lengths.

The computer software to resolve the loading history from the coupon crack
lengths, developed on the basis of laboratory test data, can be reliably applied for
field conditions. The bridge crossing histories were accurately resolved from the
crack length data recorded at these tests. Typical predicted results were within
5 percent of the measured stress. The calculated number of cycles was typically
within 5 percent of actual.

Bonded assembly laboratory tests also demonstrated that the stress histogram can
be accurately resolved from the two crack lengths. Typical data indicated numbers
of cycles and stress levels within 10 percent of actual. The latter took into account
the 20 percent reduction in strain transfer consistently observed in the bonded
attachment.

Laboratory tests showed that remote crack length measurement can be
accomplished automatically with either the Krak Gage system or the ladder gauges.
The Krak Gage system, which demonstrated an error of less than ±0.001 in., was
significantly superior in all performance aspects and can be expected to perform
well in the field.

Significant coupon size reduction potential was demonstrated in the laboratory.
This was possible due to the success of the bonded attachment method and the
improved resolution of a remote crack measurement system.

This passive, fatigue life monitoring system has demonstrated the capability to
record the bridge loading history. It is relatively inexpensive and does not require
the constant power and electronics of strain gauge type devices. This system has
the potential to assist safe and timely removal of bridges from service.
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STATIC AEROELASTIC AND DYNAMIC ANALYSIS OF T-38 WING

Jong-Ho Woo

US Army Ballistic Research Laboratory, APG, Maryland 21005-5066

ABSTRACT

This report documents the investigation of a 3-dimensional finite element model for
predicting static displacement and dynamic analysis of a T-38 wing and comparison of
the results with T-38 wing experimental data from Northrop Aircraft, Inc.

The T-38 wing structure was modeled by rod and bar(beam), membrane and shear
panel finite elements. The general structural analysis programs MSC/NASTRAN and/or
MSC/PAL2 were used to calculate deflection and mode shape.

A finite element model of the wing consisting of quadrilateral plate, triangular plate,
shear panel, and rod/bar(beam) elements was found that yielded excellent agreement
between calculated and test results for the 8 loading conditions studied. The methodol-
ogy developed in this study is expected to provide a valuable tool for static aeroelastic
and dynamic analysis of damaged T-38 wings.

I. INTRODUCTION

This work represents the first step in an overall task to predict the response of an aircraft
wing damaged by weapons fire in combat. In this work, an attempt was made to find an
adequate structural model for a wing that could subsequently be used to accurately
calculate static and dynamic aeroelastic effects of combat damage.

The first step in such an effort involved the following tasks:

a) Develop modeling techniques for efficiency and accuracy
b) Compare calculated deflections with experimental data
c) Calculate natural frequencies and mode shapes

The overall purpose of this work was to:

a) Select a finite element model for the prediction of failure loads for a damaged wing
structure.
b) Develop an aerodynamic model based on a finite element model for static aer-
oelasticity, flutter analysis, and dynamic aeroelasticity.

The experimental wing deflection data was obtained from Northrop Corporation Norair
Division from tests conducted in 1960. See Reference [1]. During the wing test, the
aircraft was supported at the fuselage forward and aft hoist points by two steel jigs which
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were tied to the steel erectile structure. Loading was accomplished by means of
hydraulic hand pumps and pressure gages, Northrop electrically-operated load main-
tainers, and Edison hydraulic proportioning units. Point loading was applied symmetric-
ally to both wings at each of the loading points.

General Approach to the Problem

The MSC/NASTRAN and/or MSC/PAL2 analytical program has been used in this
analysis for structural design, It has special conventional tools for the analysis of
thin-skinned aircraft structures.

For the undamaged T-38 wing case, the MSC/PAL2 Finite Element Analysis program
was used on a 486/25 microcomputer. Following this current effort, MSC/NASTRAN will
be used for damaged wing, static aeroelasticity and dynamic cases.

The finite element model named Model 1 was the basis for the entire problem and was
used in each of the analyses. These analyses and the associated MSC/NASTRAN
and/or MSC/PAL2 solutions are described in general in the following.

1. The finite element model of the structure was confirmed with respect to membrane
stiffness and bending stiffness using influence coefficients. A static solution was used
for static analysis.
2. Natural frequencies and mode shapes were used for the flutter analysis. Therefore,
the eigenvalue problem for the wing was solved using the dynamic analysis.

To perform static and dynamic aeroelasticity and flutter analysis of the T-38 wing, a
structural model was developed as shown in Figure 1. To calculate undamaged T-38
wing deflection, four variations of finite element models were developed and evaluated.

The first is the simplest model describing the wing geometry. See Figure 2. The nodes
in this first model were located on the top and bottom surfaces of the wing at the
intersection of two or more of the spar caps, rib flanges, or stringers. See Figure 4,
Model 1. The second model has an increased number of elements between two major
ribs. For example, in Figure 2, the elements between ws 125.0 and ws 101.0 have
increased numbers of elements. The same applies between ws 101.0 and ws 64.8. See
Figure 4, Model 2. The third model has an even greater number of elements defined
between the wing tip and wing root shown as Model 3, Figure 4. The fourth model was
further modified to include triangular plates and quadrilateral plates. See Figure 4,
Model 4. All the models used rod(beam), membrane plate, and shear panel finite
elements. These 4 models are shown in Figure 4 and defined in Table 1. Of these 4
models, the one that compares best to test results will be used in future analyses using
the MSC/NASTRAN static and dynamic aeroelasticity and flutter solutions.

For all of the models, the same analytical solution approach was used: MSC/PAL2
and/or MSC/NASTRAN. Different types of wing skin elements were used for all of the
models. For the spar and rib webs, shear panel elements only were used. Rod and
bar(beam) elements were used for the spar and rib chords, To verify these finite element
models, Rattinger's wing, Reference [2], was modeled and shown to have very good
agreement with test results.
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II. WING FINITE ELEMENT MODEL ANALYSIS

Development of the Finite Element Model

Wing Description

The T-38 wing is a structure with aluminum panels(upper and lower surfaces) that are
riveted to the root rib, main spar, auxiliary spar, and tip rib. The data necessary to
describe the physical characteristics of the wing for MSC/PAL2 and/or MSC/NASTRAN
were generated from blue prints. There were two missing parts of the drawing. One was
the leading edge spar chord and web and the other was the minor rib chord and web.
These two webs were reconstructed by knowledge of the dimensions of connecting rib
webs and edge views of themselves.

Structural Element

The files follow the format XYZi.DAT, where X represents the wing skin elements, Y the
spar and rib webs elements, Z the truss elements and i represents the wing model
number. X denotes 0 for quadrilateral plate elements, T the triangular plate elements,
Y denotes S for the shear panel elements, Z denotes R for rod elements and B for beam
elements. For instance, TSR1 .DAT means the triangular plate element is used for the
wing skins, shear panel elements are used for the spar and rib webs, and rod elements
are used for spar and rib caps for Model 1. See Table 1.

A three-dimensional finite element model of the T-38 wing structure was used to
compare with Northrop test results. As mentioned earlier, 4 models were used for the
static analysis. Each model has a different application. The element substructures that
were used to model the wing skins were triangular membranes and bending elements
and quadrilateral membranes and bending elements. As shown in Figure 4 and Table
1, models QTSR4.DAT and QTSB4.DAT were composed of triangular and quadrilateral
plate elements for wing skins. Several quadrilateral elements were divided into triangu-
lar elements for geometrical reasons or to change mesh spacing between assemblies
of quadrilateral plates. For models 1, 2 and 3, only triangular or quadrilateral plates were
used for the wing skins as shown by Figure 4. Model 1 has plate elements with large
aspect ratios. To avoid large aspect ratios, model 2 and 3 have been utilized.
MSC/NASTRAN and MSC/PAL2 have special rod and shear panel model tools for the
analysis of thin-skinned aircraft structures. The shear panel element does not represent
membrane and bending stiff nesses. Consequently, SSR1 .DAT was used for this treat-
ment and represents the shear panel elements that were used for the wing skins and
the spar and rib webs, while rod elements were used for the spar and rib chords.

Boundary Conditions

The finite element model boundary conditions were based on the experimental condi-
tions. As shown in Figure 5, the y-z(z-y) plane was assumed to be a plane of symmetry
and therefore x-displacements in this plane were assigned zero values. The finite-ele-
ment models used in this report were constrained in the x-directions at the aircraft
centerline and in the z-directions at the wing roots.
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Static Analysis

For static analysis of the T-38 wing, the static solution (SOL 24 in MSC/NASTRAN and
STAT2 in MSC/PAL2) was used. The mathematical formulation of the solution process
is based on the linear theory of elasticity. The stiffness matrix was formulated and then
partitioned with respect to the constrained degrees of freedom and unconstrained
degrees of freedom to be solved.

The finite element model developed allowed load(force) to be concentrated at a grid
point for the static analysis. The set of forces is reduced to 1-set for nodal forces from
the constraint partitioning resulting from satisying the equilibrium equations for stiffness
versus force. The resulting equation can be expressed as

{P} = [S]{D}

The vectors {P) and {D} represent the nodal forces and displacements, respectively,
and the matrix [S] represents the FEM stiffness matrix. For solution of the equations,
MSC/PAL2 or MSC/NASTRAN reduces the stiffness matrix into its upper and lower
triangular factors. Then forward-backward substitution is performed for all the load
cases having the same constraints, which is the case here. The displacement solution
for each load case contains three translational values for each grid point(except those
displacements which are constrained). In this manner, transverse displacements were
calculated for 9 grid points(A-I) shown in Figure 2. These displacements were plotted
and compared with experimental data. Figures 6 through 13 present these comparisons
for load applications from 200 lb to 5000 lb. Each figure has 6 plots a, b, c, d, e, and f.
Plots a, b, c, d, and e represent comparison of displacements from models 1-3 and test
data and plot f represents a comparison of displacements from model 4 and test data.
Each plot has 3 stations. The top station shows deflections of grid point A, B, and C(See
Figure 2), the middle station shows grid points D, E, and F, and the lower station shows
deflections of grid point G, H, and I. In other words, the top station represents 3 grid
points on wing station 125.0, the middle station represents on wing station 101.0 and
the lower station represents on wing station 64.8. The 3 grid points at each station
correspond to chord positions of 15.0%, 44.0%, and 66.6% chord.

Dynamic Analysis

Normal mode shapes and resonant frequencies were computed with the natural
frequency analysis option in the DYNA2(dynamic analysis solution in MSC/PAL2)
program. In this report, due to the limitation of active degrees of freedom for normal
modes using MSC/PAL2, the command ELIMINATE was used to reduce the number of
degrees of freedom. This command was added to QTSB4.DAT and renamed T38.DYN
for the dynamic analysis. This reduction was used primarily in the dynamic analysis,
particularly to reduce model size to one solvable in MSC/PAL2. Though this reduction
is not exact for the dynamic analysis., it is accurate enough that the lowest one-third of
the computed resonant frequencies are accurate. The first 10 natural frequencies are
shown in Table 2 and the first 4 mode shapes are in Figure 14. The x and y translation
and z rotation are zeroed out to calculate the bending vibration.
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Figure 1. T-38 Structural Finite Element Model

Table 1. Designation of Finite Element Model

FILE NAME OS~I31DAT OSRI DAT TSB1 .DAT TSR1 .DAT SSR1 .DAT

WING SKIN COUAD4 COUAD4 CTRIA3 ]ITRIA3 CSHEAR
SPAR & RIB WEB CSHEAR CSHEAR OSHEAR .]CSHEAR CSHEAR

,SPAR & RIB CHORD CBEAM CONROD CBEAM jCONROD CONROD

FILE.NAME 05B2.DAT OSR2.DAT TSB2.DAT TSR2.DAT

WING SKIN COUAD4 COUAD4 CTRIA3 CTRIA3

SPAR &RIB WEB CSHEAR CSHEAR OSHEAR CSHEAR
SPAR & RIB CHORD CBEAM CONROD CBEAM CONROD

FILENAME OSB3.DAT 05R3.DAT TSB3.DAT TSR3.DAT

WING SKIN COUAD4 COUAD4 CTRIA3 CTRIA3

SPAR & RIB WEB CSHEAR CSHEAR CSHEAR OSHEAR

SPAR & RIB CHORD CBEAM CON ROD CBEAM CON P00

FILENAME...... ...B..DA ....... D

WING SIN CQU D4 & CRIA.............IA

SPAR SKRIB CHORD C REAM ICONROD4&CRA
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15.0 %

"M.0 %

Figure 2. Location of Loading Grid Points Figure 3. Real T-38 Wing Structure

MODEL 1: OSRI, OSBi, SSR1 .DAT MODEL 1: TSR 1, TSB1 .DAT

MODEL 2:OROB. ODEe:TRTB.A

MODEL 3: OSR3, OSB2.DAT MODEL 3: TSR3, TSB2.DAT

MODEL 4: OTSR4, QTSB4.DAT

Figure 4. T-38 Wing Finite Element Model Figure 5. Boundary Condition
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Ill. DISCUSSION OF RESULTS

The results calculated by MSC/NASTRAN and/or MSC/PAL2 are in very good agree-
ment with the test results. In a few loading cases the finite element results are slightly
different from the test results, especially for 3,000 lb and 5,000 lb loading cases. In this
report many different finite element models are used to obtain deflections. The results
from TSRi.DAT and TSBi.DAT agree very well with test. The QSRi.DAT and QSBi.DAT
agreement is good, but not as good as the results of TSRi.DAT and TSBi.DAT. The T-38
wing skin has a slight curvature and some portions of the structure require better
meshing. As a result, triangular elements were chosen to obtain better aggrement. The
combination of quadrilateral and triangular plate were evaluated in this report. The
corresponding two data files(Model 4 in Table 1) are QTSB4.DAT and QTSR4.DAT and
were actually modified from QSB4.DAT and QSR4.DAT. The results from QSRi.DAT and
QSBi.DAT are still not good enough because of impractical quadrilateral plates. Conse-
quently, 102 triangular plate elements were used instead of 34 quadrilateral plate
elements from QSB4.DAT and QSR4.DAT, and very good results were produced. All
results are shown in Figures 6-13.

Choice of the type of spar and rib chords depends on the structural model. For the
current work, the spar and rib chords of the T-38 wing were modeled as beam(bar) and
rod elements in separate wing models. The method of sizing the rod elements of the
spar and rib of a wing explained in Reference [3] was used in this effort. According to
Reference [3], one way to treat the effective area of the rod element is a summation of
its own area, plus the additional term comprised of the skin thickness between the two
rods times one half the distance between the rods. There is assumed to be no bending
and membrane stiffness in the top and bottom skins(as compared to a real wing
structure and boxbeam). Because of this assumption the rod element stiffness is
increased. It is the author's experiences that a typical difficulty exists in calculation of
the effective area of rod. For example, from equation Aeff = Af + bt/2, (b is the distance
between two spar or rib chords, t is the thickness of wing skins, and, Af is the physical
cross section area of spar and rib chords) the value of b should be defined. In the case
of the T-38 wing, it has a general quadrilateral shape, so an average value of b is taken.
This procedure was used in the model SSR1.DAT. SSR1.DAT has the shear panel
option for top and bottom skins and spar and rib webs: The weakness in using this
procedure is shown in Figures 6(e)-13(e). Otherwise, for the case of the Rattinger's
wing(boxbeam with a symmetric planform and the same geometric parameter), good
results were obtained. From the author's experience, it has been found that this is a
good procedure for simple box-beam type wing structures.

Figure 14 shows four flap bending modes and the associated natural frequencies. The
natural frequencies for the higher modes appear in Table 2. At this time test data is not
available for correlation purposes.

The following are some recommendations based on this work.

1. Improved results can be expected with more nodes and elements than model 1, 2, 3,
and 4 and running MSC/NASTRAN on the CRAY computer.
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2. The T-38 wing skin has variable thicknesses so it is recommended with
MSC/NASTRAN to choose the CQUAD8 card which defines a curved quadrilateral shell
element with eight grid points. For the triangular plate, CTRIA6 will be used in the
follow-on effort.

Table 2. Natural Frequencies of T-38 Wing

1 4.643

2 6.745

3 7.092

4 7.105

5 7.799

6 7.944

7 8.269

8 10.681

9 11.542

10 12.655

IV CONCLUSION

In view of the agreement between test and analytical results, Model 4(QTSR4.DAT and
QTSB4.DAT) that were used quadrilateral and triangular plate elements for wing skins
, shear panel elements for spar/rib webs and rod or bar(beam) elements for spar/rib
chords is adequate for determining deflections of complex wings such as the T-38 wing.
This model 4, which was used to reduce the problem size is efficient and accurate as
shown in Figures 6(f)-13(f). It will be selected as the T-38 wing model for static and
dynamic aeroelasticity and flutter solutions because accurate determination of influence
coefficients is needed in such analyses.

Mode 1: 4.643 cps Mode 2: 6.745 cps

Mode 3:7.092 cps Mode 4:7.105 cps

FIgure 14. Mode Shapes of T-38 Wing (Solid:deflected Broken:undeflected)
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INTRODUCTION

Aluminum oxide has traditionally been considered a purely brittle
material at room temperature. However, its compressive fracture stress has
been shown to exhibit some strain rate dependance [1]. This strain rate
dependance suggests that either some dislocation or twinning activity is
occurring or that microcracking is taking place throughout the volume of the
material at room temperature. Munson and Lawrence [2] speculated that the
deformation of alumina at room temperature was the result of microcracks
being activated throughout the sample and that this was accompanied by
either dislocation motion or twinning. Indeed plastic deformation has been
observed [1],[3],[4], particularly in the form of twinning. Lankford [1]
suggested that the twinning nucleates the microcracks, generally at grain
boundary-twin intersections. In addition, the degree to which a ceramic
material exhibits a strain rate dependance of its compressive strength
(fracture strength) will be governed by its microstructure. The
microstructural factors of importance include purity, grain size, porosity, as
well as flaw size distribution.

A considerable amount of data exists on the mechanical properties
of alumina. Unfortunately it is difficult sometimes to draw conclusions about
the dependance of these properties on microstructural factors because very
few commercially available alumina's are similar in composition. In order
to obtain a more fundamental understanding of the rate dependance of the
fracture strength we have fabricated our own alumina using a high purity
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alumina powder. This allowed us to control the microstructure of the alumina
produced, namely the grain size and porosity level. Testing has been
conducted over the strain rate range of 10.4 to 103s1 . Therefore, the purpose
of this paper was to present preliminary results of the strain rate dependence
of this ultra pure, high strength alumina.

him

Figure 1. SEM micrograph showing grain structure of MTU JS-I alumina.

MATERIAL PREPARATION

The starting powder, CR6-21, was a 99.99% pure alumina with a
median particle size of 0.52 pm. No additions of any kind were made to the
powder, thereby minimizing the formation of any second phases during
processing. To remove any organic impurities, the powder was calcined at
650'C in high purity alumina crucibles for 1 hour. Following the calcining the
powder was pulverized using a mortar and pestle to eliminate any large
agglomerates which may have formed during calcining. Primary consolidation
of the powder was performed using a vacuum hot press (VHP) with graphite
dies. The hot pressing conditions were 1400'C for 2.5 hours at 34.5 Mpa
(5000 psi). This was then followed by a 172.4 Mpa (25 ksi) hot isostatic press
(HIP) cycle at 1300'C for 2 hours. The material thus produced will be called

'Baikowski Int. Corp., Charlotte, NC, USA.
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MTU JS-I. By using different heat treatments on JS-I it was possible to
produce materials with different microstructures. Material MTU JS-II was
produced by heat treating JS-I in air for 50 hrs at 1475'C followed by a 2 hr
HIP at 1300 0C and 172.4 Mpa.

Figure 1 is an SEM micrograph of a representative sample of JS-I that
was polished and then thermally etched at 1500'C for 5 minutes. Using an
image analysis system, the mean grain diameter was determined to be 0.95
pm. The two dimensional representation of the grains in the micrographs
were corrected by multiplying by 1.56 yielding a mean grain size of 1.48 pm
[5]. In addition to obtaining a mean grain size, the grain size distribution was
determined and is shown in Figure 2.

Alumina has a tendency to form plate-like grains when subjected to
high temperatures. In order to characterize the degree of grain shape
anisotropy, the digitized information was also used to calculate a form factor
for each grain. This form factor, if, represents the extent to which each grain
deviates from a perfect circle. It is based on the area and perimeter of the
grain using the following relationship

yf_- 41___A
ffr 2

where P is the perimeter and A the area. For comparison, a circle would have
a form factor of 1.0. However, a dense high purity ceramic would not be
expected to have circular or spherical grains. An ideal, high density, equiaxed
grained ceramic in two dimensions could be expected to have six neighboring
grains. The form factor of such a structure using the above relationship would
be 0.91. The distribution of form factors for JS-I are shown in Figure 3. The
median form factor was found to be 0.86 with an average of 0.84.

The density of JS-I was nearly 100%. Figure 4 is a TEM micrograph
of the material. The existing porosity was predominantly transgranular.
Because the pores are isolated from the grain boundaries, further densification
would be very difficult. Densities measured by immersion in distilled water
indicate the material to have a density greater than 99.5% of theoretical.

One consequence of processing an alumina in a vacuum hot press with
graphite dies is the tendency for void formation when the material is heated
in air [6]. This void formation or bloating is believed to be the result of CO
and CO2 forming at grain boundaries when oxygen in the air combines with
carbon trapped along grain boundaries. Due to this bloating, the porosity of
JS-II has increased relative to JS-I and this increased porosity tends to be
distributed at the grain boundaries. Using immersion techniques the density

223



l.1

0.6

S0.6.

0.7'

0

0.1

GUN DIAMnM (MICONS)

Figure 2. Grain size distribution of MTU JS-I.
100

N

40.

30.

1 0 .?1

GRAIN FIRM FACET R, ITO

Figure 3. Form factor distribution of MTU JS-I.

of JS-I1 was found to be approximately 99.3%. An additional consequence of
the grain growth in JS-II is that the shape of its grains are slightly less
equiaxed than those of JS-I. At this time the microstructure of JS-II has not
been characterized with the digitization technique used for JS-I. However the
grain size of JS-II is approximately 10 pam.
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Figure 4. TEM micrograph of JS-I showing porosity.

In addition to the MTU JS alumina's, a commercially available
alumina was tested as well. The material, brand name Ceraver, is a 92 percent
alumina with a mean grain size of 3.73 microns. Figure 5 is a TIEM
micrograph showing the extensive presence of a glass phase in the
microstructure of the Ceraver. The primary reason for testing this matcrial
was to provide a check of our experimental technique with published data for
the Ceraver [7].

Figure 5. TEM micrograph of Ceraver with glass phases.

Compression samples of the MTU alumina were machined to
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4.76 mm dia. x 9.52 mm in length. The dimensional tolerances and surface
finishes are summarized in Table 1. They are similar to those used by
Lankford [1]. The Ceraver samples were machined to 6.35 mm dia. x 12.7
mm in length. These were the original dimensions recommended by Lankford
for the Hopkinson bar tests (which are discussed later). The reason for the
reduction in size of the MTU alumina samples was because the Hopkinson
bar test set-up would not have been able to attain the stresses necessary to
fracture the MTU alumina without risking permanent damage to the apparatus
itself. The surface finish of the Ceraver samples were typically poorer than
those of the MTU alumina. This can be attributed to
the pull-out of grains in the Ceraver due to the high glassy phase content.

TABLE 1. Machining Tolerances for Compression Samples and Anvils.

Diameters: to within 0.05 mm
Dimensions: x.xx ± 0.02 mm

x.xxx ± 0.002 mm
Parallelism: end faces to within 0.0005 mm
Perpendicularity: end faces to sample centerline

within 0.002 mm
Flatness: end faces to within 0.0125 mm
Surface finish: end faces to 1 micron or better

The cylindrical surfaces of the MTU alumina samples, with the
exception of a few of the JS-I samples, were polished through 1 /pm diamond
paste. This was carried out to minimize the effect of surface damage due to
machining on the fracture strength and also to allow for SEM or optical
analyses of the surfaces of deformed samples. This procedure was not
performed on the Ceraver due to grain pullout problems during polishing.
Despite the polishing, no significant difference in compressive fracture
strength was observed between JS-I samples with their cylindrical surfaces
polished and those tested in the as machined condition.

EXPERIMENTAL PROCEDURE

A die set was used during the quasi-static compression tests to insure
the sample and series of anvils were always parallel and in line. Two D2 tool
steel platens heat treated to a R, of -60 were bolted to the upper and lower
cross members of the die set. Between these tool steel platens and the sample
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were either AD9992 alumina anvils or KF306 3 tungsten carbide anvils. The
anvils were 12.7 mm dia. x 9.52 mm in length with the end facing the sample
polished to the same surface finish as that specified for the sample faces (See
Table 1). The use of the AD999 anvils was discontinued because they
typically failed during the test. The WC anvils were chosen as an alternative
to the AD999 anvils to avoid anvil failure. As an additional precaution, the
WC anvils were placed in steel rings which clamp tightly to the anvil and add
radial confinement. Although surface damage was apparent in the WC anvils
following testing of the MTU material, they did not fail catastrophically as
did the AD999 anvils. Each anvil was used only once. Teflon tape was used
at the sample anvil interfaces and at the interfaces between the anvils and the
D2 tool steel platens.

In order to obtain accurate strain measurements, strain gages were
attached to the samples. In most cases both axially and circumferentially
positioned gages were used. This allowed for measurements of stiffness, strain
rate, and Poisson's ratio. Using this approach the effect of machine stiffness
was minimized. Strains and strain rates are measured directly off of the
sample.

An MTS servo-hydraulic testing machine was used for all the tests
completed at 104 to 10°s-1 strain rates. Load, axial strain, and circumferential
strain data were recorded with an IBM Model 50SX. The software and
interfacing board were from Labtech Notebook.

The high strain rate tests (10' sec-) were performed at Southwest
Research Institute (SwRI) using their split Hopkinson pressure bar (SHPB)
apparatus. Axial and in most cases circumferential strain gages were mounted
on the tested samples in order to obtain the actual strain profiles in the
samples. Rogers and Nemat-Nasser [8] indicated that the traditional method
of obtaining the strain profile in a ceramic using the reflected strain signal in
the incident bar was insufficient. In testing Mg-PSZ samples with the
Hopkinson bar they used strain gages to measure axial and transverse strains.
Anderson et al [9] reached the same conclusion and attributed the discrepancy
to the small amplitude of the reflected pulse which occurs because of the
similar elastic impedances between the steel bars of the SHPB and the
ceramic. However, we have also observed that the stress profile in the sample
inferred from the transmitter bar signal can differ significantly from that
measured using the sample strain gages. This will be shown later. The

2Coors Porcelain Co., Golden, CO, USA.

3Kennametal Inc., Raleigh, NC, USA.
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transmitter bar signal requires more than the normal correction for the change
in area between the sample and bars. While it was possible to observe trends
based on the signals recorded off the transmitter and incident bars, it was not
possible to determine actual stress magnitudes. All of these problems were
eliminated by using strain gages mounted directly on the alumina samples.

As with the quasi-static testing, it was necessary to use WC anvils for
the Hopkinson bar tests. The AD999 anvils failed prematurely. The WC
anvils used in the Hopkinson bar were 12.7 mm Dia. x 12.7 mm in length.
Both faces were machined and polished to the specifications used for the
samples. Despite the switch to the WC anvils, anvil failure still occurred.
Consequently the fracture stresses of the samples at the strain rate of 10 s'
may be underestimated, but are still very high compared with other alumina.

In addition to the compression tests, a limited number of four-point
bend tests were also performed on the MTU JS-I alumina. This testing was
conducted in accordance with sample style B of MIL-STD-1942. The tensile
surface of each sample was polished using 15, 6, 3, 1, and 1 /pm diamond
paste on either Tex Met or nylon cloth. The nominal dimensions of the
samples were 45 mm x 4 mm x 3 mm.

RESULTS

Typical stress-strain curves for JS-I alumina and a Ceraver sample for
a strain rate of 10- s- are shown in Figure 6. Table 2 summarizes the elastic
properties of the two materials obtained during compression testing. Young's
modulus for the Ceraver was the same as that reported for this material by
ALCOA [7]. The higher purity, slightly finer grain sized MTU JS-I alumina
has a significantly higher compressive strength than the Ceraver. It also
exhibited a 25% greater stiffness. The axial strain history of the samples
given in Figure 6 are shown in Figure 7. Due to slack in the machine which
is taken up during loading, the strain is not linear in time initially. The strain
rate characterizing a test was taken as the slope of the linear portion of the
curve.

TABLE 2. Elastic Properties
Material Young's Modulus Poisson's Ratio
MTU JS-I 414 Gpa 0.25 ± 0.02
MTU JS-II 348 Gpa 0.25 ± 0.02
Ceraver 310 Gpa 0.25 ± 0.02

(307 GPA)*
*Manufacturer's value [7]
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Figure 7. Typical strain histories of MTU JS-1 and Ceraver in the 10-s41

range.

The MTU JS-I and the Ceraver were each tested at strain rates ranging
from 10-4 s- to 10' s1 . The compressive strength as a function of strain rate
is shown in Figure 8 for these materials as well as data collected by Lankford
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on Lucalox [1]. The figure shows that the compressive strengths of the
Lucalox and Ceraver are quite similar at the low and intermediate strain rates.
This is true even though their grain sizes are quite different; 25 Pm for the
Lucalox versus 3.73 pm for the Ceraver. The JS-I alumina exhibits a
significantly higher strength than the other two aluminas at all strain rates
tested. Surprisingly JS-II had the lowest fracture strength at the lowest strain
rate. As an independent verification of the quasi-static compressive strength
of the MTU JS-I alumina obtained in our laboratory, one sample was tested
at SwRI with a strain rate of 10' s-'. They obtained a similar compressive
strength.
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Figure 8. Compressive strength as a function of strain rate for JS-I, JS-Il,
Ceraver and Lucolux.

A typical axial strain history for a MTU JS-I alumina sample tested
with the Hopkinson bar are shown in Figure 9. The axial strain rate is again
the slope of the best fit line through the data and in Figure 9 this was about
4560 s-. The peak axial strain in the sample was approximately 1.95%. Using
the strain signal from the strain gages mounted directly to the sample along
with the Young's modulus obtained from the quasi-static tests, the peak stress
is 8073 Mpa. Figure 10 shows the stress pulse taken from the transmitter bar.
The magnitude of the stress has already been corrected for the change in cross
sectional area between the bar and the sample. The peak stress in the sample
indicated from this figure however is only 3850 Mpa, 52.3% lower than that
obtained from the sample strain gage data. For the three tests of JS-I at 103s 1

the stress inferred from the transmitter bar signal was always less than the
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stress obtained from the sample strain gage signal. The results are
summarized in Table 3. This emphasizes the problems associated with using
the transmitter bar strain gage data to infer the stress state in a ceramic
material. All the Hopkinson bar fracture stresses presented here are derived
from the strain signal and Young's modulus.
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Figure 9. Strain history of JS-I sample from specimen gage.
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Figure 10. Stress history in a JS-I sample using transmitter bar signal.
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TABLE 3. Comparison of Transmitter Bar signal and sample gage signal.

Sample Anvil Transmitter Bar Sample gage %
Signal (Mpa) Signal (Mpa) Difference

B18CI WC 5350 8400 36.3
B19C1 JS-I 3850 8070 52.3
B18B1 WC 3820 8650 55.8

The mean flexural strength of the JS-I material from four-point bend
tests was approximately 909 Mpa. This is approximately 40% greater than the
manufacturers listed strength for AD999 [10]. In each of the tests to date,
failure has occurred under one of the center supports of the test fixture.
Additional testing is in progress to obtain the Weibull distribution for the
material. Strain gages were mounted to the compression surface of the four-
point bend test pieces to check the actual strain rate and stress state to failure.
The fracture strengths calculated using the strain gage data and the materials
Young's modulus agreed with the elementary solution from strength of
materials to within 2.5%. However, it was found that the strain rate was
slightly less then the 10W s- specified by MIL-STD-1942 even though the
required crosshead velocity was used.4

DISCUSSION

One of the concerns in using the Hopkinson bar with our small sample
geometry is that a uniaxial state of stress may not exist in the sample during
the test. The longitudinal sound speed of the JS-I alumina is about 10.9 to
11.0 km/s. It therefore takes the leading edge of the stress wave
approximately 0.87 ps for it to travel the length of the JS-I sample. The total
time of the pulse to failure in the sample is typically around 7.5 ps. Therefore
the wave has travelled the length of the sample approximately 8.6 times
before sample failure. The time for a wave to travel from the center of the
sample to its outer radius and then back is approximately 0.43 ps. This should
ensure sufficient time for relief waves from the outer edge of the sample to
unload any inertial confinement and result in a state of uniaxial stress (a

'The actual strain rate was approximately 7x10-5 s1. The difference is due to
the stiffness of the machine. However, this slight difference in strain rate is
not believed to be significant. 232



condition necessary for valid split Hopkinson bar results) when failure occurs.
This same argument has been used by Anderson et al [9] to verify a state of
uniaxial stress. They also obtained computer simulations which verified this
result.

A ceramic, which generally shows little plastic deformation before
failure, will typically fracture during the rise portion of the incident wave in
the Hopkinson bar [1],[9]. However, the rise time of the strain signal in
Figure 9 approaches the rise time of the pulse in the incident bar shown in
Figure 11. If the rise times are nearly the same, the sample may not fracture
during the rise but instead at or after the peak of the incident pulse. This was
unexpected and may indicate that the fracture strengths thus obtained are
underestimated. More analysis is needed to verify this.
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Figure 11. Stress wave off of incident bar.

There is an appreciable difference between the compressive strengths
of the JS-I and JS-II alumina. This is not surprising since JS-I has a finer
grain size and higher density. However, an interesting observation from
Figure 8 is that the slope of the line through the JS-I and JS-II data from 10'
to 10'st strain rates are approximately parallel, but then deviate beyond 100st
strain rate. Since the main difference between JS-I and JS-II is grain size one
would have expected a similar strain rate dependence. Although more data
is needed on JS-lI at the lower strain rates, it is the authors belief that the
* fracture strength of JS-I at 103s' may be due to anvil failure and thus
underestimated. In this regard when the anvil material was changed from
AD999 to WC there was a significant increase in the strength of the JS-I
material. A similar rise occurred with the Ceraver at 10' s-' when AD999
anvils were substituted with WC anvils.
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Figures 12 and 13 show the fracture surfaces recovered from JS-I and
JS-II samples loaded in compression. In comparing these fracture surfaces it
can be seen that they are distinct. JS-I has a mixture of both intergranular and
transgranular fracture whereas JS-II is dominated by transgranular failure.
However, the analysis of the fracture surfaces indicated that no transition
from one dominant type of fracture to another occurred with strain rate. The
lower density and coarser grain size of the JS-II material had a significant
effect on both its strength and fracture behavior. The increased porosity of JS-
II due to bloating was distributed mainly along grain boundaries. One might
have expected cracks to propagate along grain boundaries because of these
additional voids. This does not appear to be the case.

The Ceraver and Lucalox do not show the same rate dependence as
JS-I and JS-II. This may be due to a combination of factors including flaw
and grain sizes as well as nonequiaxed grains and purity. Figure 8 suggests
that the Ceraver is much more rate dependent than the Lucalox at the high
strain rates. This is difficult to explain based on microstructural differences
alone, but it may change if the Lucalox was tested using WC anvils and
sample mounted strain gages.

Despite some of the uncertainties in the Hopkinson bar results, the
compressive strengths of the MTU JS-I alumina is impressive. The fact that
such high strengths can be achieved with a polycrystal alumina demonstrates
the importance of purity level and control of the microstructure in order to
obtain the true material properties of a ceramic such as alumina.
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ABSTRACT

A new conceptual design was developed to enhance the
hardness of a 7 psi hardened shelter to a 10 psi performance
level. The design consists of low cost, low weight, and easy
to install/remove structural enhancement devices (SED) that
strengthen the structural capability of the shelter with the
use of diagonal truss members without significantly reducing
the useful interior volume. To validate the design concept, a
nonlinear dynamic structural response analysis of the shelter
subjected to blast loading was performed using the finite
element method. After the analysis predicted adequate
response, the shelter was tested at the Gramat shock tube test
facility shown in Figure 1. The shelter/truck test setup
within the shock tube is shown in Figure 2.

Once the new conceptual design was established, finite
element (ADINA) models were developed and nonlinear dynamic
structural response analyses were performed. Shelter 3-D
models of the sidewall and endwall orientations respectively
were then developed. Based on the calculated response
predictions, the design was recycled and the models updated.
The final set of analytical computer runs predicted the
successful performance of the shelter with the installed
structural enhancements. The predicted response data included
accelerations, velocities, and displacements, internal loads,
stresses and strains for the entire shelter as a function of
time. These data sets, one for sidewall blast and one for
endwall blast orientation, also served to develop the test
instrumentation plan. Accelerometers, strain gages and
displacement "break sticks" locations and response ranges were
developed from post-processing the ADINA time history output
for specific locations and global direction of interest.
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INTRODUCTION

Kaman AviDyne has previously performed numerous finite.
element dynamic analyses of shelters subjected to blast

loadings as described in References 1 and 2. Based on this
experience it was expected that shelter wall-panel deflections

would approach or even exceed the sandwich thickness and
therefore, as expected, a large deflection or geometrically

nonlinear analysis was required. The finite element code ADINA

(Reference 3) was chosen for the analysis due to the fact that

a baseline ADINA shelter model was already developed and
verified by Kaman AviDyne in a previous shelter design and

analysis program (Reference 1).

The I-shelter is a nuclear (blast/thermal/fragment)

hardened, field shelter designed for transport by military
transport vehicles. The shelter is 138. in. long, 81.5 in.
wide, and 77. in. high. The walls, roof, and floor are single

multilayered composite panels consisting of a 0.063 in. thick

inner and outer aluminum skins sandwiching a light urethane
foam core of 2.5 in. thickness. A 0.05 in. thick Kevlar
applique bonded to the outer aluminum skin provides both
fragmentation and nuclear thermal pulse protection. Glass
fiber reinforced plastic (FRP) box stiffeners with 3.0 x 2.5

in. cross section of 0.14 in. thickness, unidirectionally
spaced at 22.0 in., provide shear carrying support within each
panel. FRP channels of 0.10 in. thickness provide stiffness at
panel edges. Aluminum joint doublers/stiffeners of 0.05 in.
thickness and edge covers of 0.10 in. thickness, are used
together with FRP edge caps to form the panel joint assembly.
A 0.020 in. thick layer coating of Chartek gives edge covers
nuclear/thermal protection, while four types of adhesives bond

the respective shelter components. The entire shelter is
supported on three elastic skids and secured to a truck's cargo
bed with four steel cables running from the lifting eyes
located at the upper shelter corners to the cargo-bed side
wall. Detailed drawings of the shelter components as well as a

complete description of the structure may be found in
References 1 and 4.

ANALYSIS

The ADINA analysis involved a full detailed 3-D model of
the entire shelter. An existing baseline model (Reference 1)

of the sidewall encounter was updated to include the SEDs as
shown in Figure 3. They were represented with 2 node beam
elements. It should be noted that when the baseline shelter
model was developed (Reference 1) a major simplifying
assumption was necessary to keep the model size within
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acceptable bounds. A vertical plane of symmetry was assumed
dividing the shelter into front and rear halves. This allowed
for modeling one half of the shelter, but excluded modeling the
air conditioners and door, which are asymmetrical features.
Since the enhanced shelter was to be tested for door-end wall
shock encounter, response predictions for this orientation were
also of interest in this test program. A new 3-D shelter model
was developed for this case. A vertical plane of symmetry was
also assumed and it divided the shelter into roadside and
curbside halves. In this model the entry/exit door and framing
was modeled explicitly. Three SEDs were again represented with
2 node beam elements (see Figure 4). The shelter walls were
represented with 3D sandwich elements and edge members with 3D
solid elements.

Thus final dynamic shelter response predictions were
determined by performing ADINA runs with two separate 3-D
shelter models; one for curbside/roadside blast encounter (see
Figure 5) and one for door-end orientation (see Figure 6). The
sidewall blast model consisted of 906 nodes and 47 pressure
load functions. The newly developed door-end blast model had
1938 nodes and 76 pressure load functions.

The full I-shelter (with SEDs) finite element analyses
were performed for blast loads. Pressure loading was applied
to all external element surfaces in the 3-D ADINA I-shelter
model, except on the floor, which was shielded from the blast
by the truck cargo-bed and support skids. Each external
sandwich element loading was input as a uniformly loaded shell
surface pressure and each external 2-D element loading was
input as a uniformly loaded 3-D surface pressure. A pressure
time-history representing the instantaneous average pressure
was input for each pressure surface. For the blast-side wall
and leeward side wall the pressure at the centroidal of the
element was used. For the roof and side walls parallel to the
blast, the centroidal pressure was adjusted for the engulfment
of the shock from the leading edge to the trailing edge. This
was accomplished by giving the pressure time history a finite
rise time.

An analytical approach was used to define the 10 psi
nuclear blast pressure loading for the I-shelter. Predictions
were obtained using the BLOCK code. BLOCK is a digital
computer program developed by Kaman AviDyne for calculating the
blast loading on box like structures (Reference 5). The
program computes the overpressures due to a shock wave
traveling parallel to the ground and impinging on a closed,
rectangular parallelepiped from any angle. Both the
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diffractive and drag phrases of the loading are predicted on
the surfaces of the structure.

The standard 60 W? HOB, sea level model was selected
using a 100-KT nuclear yield. The range was specified such
that 10.0 psi peak incident overpressure resulted. A total of
76 pressure load time histories were generated for the various
loading surfaces on the shelter model for the endwall blast
direction. For the sidewall blast orientation 47 pressure load
time histories were generated. In the ADINA input, each curve
is represented by multiple linear segments derived using a
process of curve fitting the generally smooth pressure
histories produced by BLOCK.

The nonlinear dynamic, elastic-plastic response of the
I-shelter was calculated using the two half models subjected to
the aerodynamic loadings as described above. Each model
represented a symmetric half of the shelter with the vertical
plane of symmetry at shelter centerline and parallel to the
blast direction. This final design verification analysis
involved calculating the model displacements with time using
more than 2,500 equations of equilibrium. To obtain a solution
for this large set of coupled nonlinear equations, the Newmark
beta numerical integration procedure was selected. The
analysis was carried out to 12 milliseconds with a time step of
0.10 milliseconds. Solving the equilibrium equations at each
time increment (AT) requires that the mass and stiffness
matrices be formed, and then inverted. With nonlinear
response, the stiffness matrix changes with every time step,
and frequent stiffness reformations are necessary. The
stiffness matrix updating was specified to be performed at
every solution time step (t + At).

A consistent mass matrix formulation was used for the
dynamic response calculations. This mass matrix is calculated
by using the same special interpolation functions for velocity
and acceleration as for displacements. Consequently, the mass
matrix, stiffness matrix, and applied loads are consistent with
each other.

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) matrix
updating method was used to restore equilibrium to the solution
at every step (t + ?t). Based on Kaman AviDyne's past
experience, this iterative procedure is considered best in
ADINA because of its excellent convergence characteristics.
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TEST/ANALYSIS RESULTS

The ADINA computed peak deformed shapes for the sidewall
blast and the endwall blast orientations are shown in Figures 7
and 8. The voluminous output data contained the predicted
accelerations, velocities, and displacements, internal loads,
stresses and strains for the entire shelter as a function of
time. During the shock tube test more than forty channels of
response data were collected. Still photography and real time
video were also taken. Time history measurements of strains
and accelerations at selected locations were recorded.
Displacement measurements were obtained by so-called break
sticks. These thin balsa wood sticks were attached to the
internal electronic racks pointing toward sidewalls and roof at
locations of interest.

A complete correlation study was performed on the
sidewall and endwall blast test and analysis results (see
Reference 6). Several key comparisons are included in this
discussion to show the levels of response measured as compared
to the analytical predictions.

The displacement response test data was obtained with the
break stick system as described above. This meant that only
maximum displacements were known with no information available
on the time response. Thus, when comparing the analysis
displacement time history to test results, only the peak
displacement response may be checked. The sidewall blast
displacements for the blast sidewall at about 1/3 horizontal
span and half way up vertically compared to test peak level is
shown in Figure 9. There is good agreement in the magnitude of
displacements, not only on the blast sidewall, but on the roof
and the leeward sidewall as well. Figure 10 shows a similar
comparison for the endwall blast orientation. This time the
location is on the blast endwall 2/3 up and next to the
centered door frame. Excellent displacement response agreement
was found also on other shelter walls for this test.

Strain time history data was collected at selected points
for which finite element locations were coincident and which
described the structural response of the shelter. A typical
blast sidewall strain in the inner skin of the sandwich is
shown in Figure 11. The strain time history correlation was
generally good at center regions of the walls and roof. A
somewhat worse correlation was found at locations near edges of
walls where the disparity was typically on the order of 50%.
This was mostly due to the mechanical joints between walls
which were not explicity modeled. Figure 12 shows the strain
results for the endwall blast case. In this case the strains
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are not in excellent agreement due to the endwall doorway and
its framing/gasket connections. The effects of this local
hardware were not modeled explicitly and thus only an
approximate endwall stress/strain distribution was predicted.
Other sidewalls and the roof showed a much better correlation
as in the sidewall blast case.

Numerous accelerometers were installed in both tests.
Figure 13 shows a very typical excellent agreement between the
finite element prediction and the test data for a location on
the blast sidewall. The blast endwall comparison is presented
in Figure 14. In both tests the acceleration correlation was
excellent at all locations except for points on the endwall
near the door. This was again primarily due to the
approximations used in the modeling of this localized region.

The ADINA finite element analysis predicted a
satisfactory performance of the shelter when subjected to the
specified blast wave. The tests results confirmed this and
also verified the predicted response levels throughout the
shelter structure.
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Figure 3. SEDs side wall blast model.

Figure 4. SEDs end wall blast model.
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Figure 5. Side wall blast model.

Figure 6. End wall blast model.
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Figure 7. Side wall blast at 10 psi T = 4.1 msec MAG = 10.

Figure 8. End wall blast at 10 psi T = 6.7 msec.
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STRUCTURAL ANALYSIS OF PERSHING 1A OVERPACK

SHIPPING CONTAINER

David L. Gray

Kaman Sciences Corporation
Colorado Springs, Colorado 80907

INTRODUCTION

The Pershing 1A (P1A) overpack shipping container was
designed in 1990 as a low cost, easily produced container for
transporting the Pershing 1A nuclear warhead. It was a design
modification of the H838 hand truck intended to provide improved
protection to the warhead payload. Recently, much attention has
been given to the safety of nuclear munitions transportation and
the design requirements have become much more stringent. As a
result, the overpack design has been revisited to make some simple
modifications to the existing design in an effort to meet these more
stringent requirements.

The design requirements for the present work involve a crash
scenario from an airplane or helicopter crash. Although the
likelihood of such an event ever occurring is very small, the potential
hazard of radioactive contamination is sufficient to warrant a
rigorous analysis of the ability of the shipping container to
withstand the severe loading environment of an airplane or
helicopter accident. In addition to the energy of the crash itself, the
container must be able to withstand an engulfing fuel fire for a
certain length of time, presumably until fire fighting equipment
could reach the crash scene to extinguish the fire.

A nominal design requirement of 90 ft/sec end-on impact
followed by a 45 minute fuel fire was originally proposed by the
Project Manager for nuclear munitions (PM/NUC) - United States
Army. The current design goal is a 150 ft/sec end-on impact
followed by a 60 minute fuel fire. The synergism between the two
environments (impact and fire) is of critical importance. Also of
concern is the possibility of an edge impact.

The PlA overpack shipping container is shown in Figure 1. It
consists of a warhead payload surrounded by foam inside an
aluminum container (H838 hand truck with wheels cut off). The
inner aluminum container is surrounded by additional foam which is
covered by 3/4 inch plywood. For thermal reasons, it is important
that the inner container maintain its structural integrity to provide a
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thermal barrier to heat. It is also necessary that the outer (plywood)
container remain basically intact since the outer foam provides
thermal protection to the payload, as well.

END VIEW

SIDE VIEW

FIGURE 1. PERSHING 1A OVERPACK SHIPPING CONTAINER

DISCUSSION

In keeping with the original design requirement, a full scale
end-on drop test was conducted at Sandia National Laboratory in
August of 1990. The velocity at impact onto a concrete pad was 96
ft/sec. The inner container ruptured at the impact end due to the
excursion of the warhead inside the container. Figure 2 shows the
damage to the end of the inner container. As can be seen the end
plate ruptured approximately 270 degrees around but did not
completely perforate. It would appear that a threshold energy level
was achieved in that the container tore but did not fully perforate.
Nevertheless, sufficient damage did occur to raise doubts about the
containers ability to withstand a fuel fire after impact with the inner
container structural integrity compromised.

A finite element analysis has been done using ABAQUS [1] to
correlate the results of the full scale drop test using an axisymmetric
model. Figure 3a shows the initial model that was used.
Axisymmetry was employed to minimize computer cost and because
the response of the structure appears to have been reasonably
axisymmetric, even though the container itself is not. ABAQUS was
chosen for its ability to do nonlinear large deformation plasticity
calculations and for its ability to model crushable foam materials.

The inner container is made of 5083-H113 aluminum and is
0.060 inches thick. The foam was modeled as General Plastics FR-
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FIGURE 2. POST TEST DAMAGE OF INNER CONTAINER

3710 crushable polyurethane foam. The payload was modeled as a
mass and frontal area mockup of the actual warhead. No attempt
was made to simulate the response of the warhead itself. The
material properties that were used are shown in Table 1.

The ABAQUS *FOAM [21 model was not suitable for the foam
in this analysis. The *FOAM model requires a monotonic increase in
the stress-strain curve whereas the actual stress-strain curve for the
General Plastics foam is not monotonic. Figure 4 shows the actual
stress-strain curve compared to three *FOAM calibration curves
forced to match at 60 percent, 70 percent and 80 percent strain. As
can be seen none of the *FOAM curves accurately represent the real
foam. As a result, an elastic-plastic material was used for the foam
material model with the actual stress-strain data as input. The
disadvantage in doing this is that the model will not simulate the
crushing behavior of the real foam. Rather than remaining crushed,
as with the real foam, the elastic-plastic model will come back down
the stress-strain curve and restore energy to the system. This
problem can be overlooked as long as the material remains in
compression. The analysis in the present work is considered to be
complete when the warhead has bottomed out, and up until then
the foam material in front of the warhead has been under
compression the entire time. Therefore, it is believed that the
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TABLE 1. MATERIAL PROPERTIES

Young's Pisns Density Yield Tensile Failure
Material Modulus Raoison Strength Strength Strain

(psi) Rto (lb/in3) (psi) (psi) (in/in)

5083-HI13AI 10.3E +06 0.331 0.098 33.OE + 03 46.OE +03 0.160

1020 St 30.01z + 06 0 300 0.283 30.OE + 03 55.OE + 03 0.250

G~ P. Foam 10.8E +03 0,000 000579 532 0

(10 0 pcf)

Payload 300OE + 06 0,300 004442

3/4 Plywood 1 ý6E + 06 0,100 0,01534

(25 5 pcf)
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model yields accurate results and can be used for an end-on impact
analysis.

ABAQUS *FOAM MODEL CALIBRATION
5000:

4500 /_
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FIGURE 4. GP FOAM (FR-3710) STRESS-STRAIN CURVE

Excellent correlation with the full scale drop test was achieved
in the analysis with an end-on impact velocity of 96 ft/sec. The
ABAQUS finite element model accurately predicted the failure
location (radially) of the aluminum container and the overall
deformation of the inner and outer containers. The payload
traveled approximately 5.0 inches and bottomed out at
approximately 7.0 milliseconds after impact.* Figure 5a shows the
overall deformed geometry of the shipping container. As can be
seen, the payload has shifted forward significantly and has pushed
the end of the inner container forward. Fig ure 5b shows the
deformation and equivalent plastic strain of the inner container
after impact. Using a strain to failure of 16.0 percent for the
aluminum, it can be seen that the inner container end plate has
ruptured. The location of the failure point is at approximately R =
5.6 inches. This corresponds very well to the rupture location sh own
in Figure 2.
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FAILURE HERE

a b

FIGURE 5. ABAQUS DROP TEST CORRELATION RESULTS

In addition to the finite element analysis, a subscale testing
program was conducted to give further insight into the failure
modes and damage mechanisms of the inner container and to
provide a low cost alternative testing method to assess the efficacy
of the suggested design modifications at higher velocity impacts.

The Kaman light gas gun facility was used to shoot one-sixth
scale models of the inner container with a scale mass simulation
payload at the original impact velocity of 96 ft/sec. Figure 6 shows a
drawing of the subscale test article. The test article was fired into
the outer foam which was backed by concrete and fixed to ground.

The threshold energy level was accurately established with the
subscale models. Figure 7 shows a photograph of three test articles
fired at 100, 84, and 92 ft/sec. As can be seen, total perforation
(punch-out) occurred at 100 ft/sec, no rupturing occurred at 84
ft/sec, and tearing without perforation occurred at 92 ft/sec,
approximately 100 degrees around. This result corresponds very
well with the full scale drop test as shown in Figure 2.

Having correlated the finite element model and subscale tests
with the full scale drop test, the next step was to analyze simple
design modifications and their effectiveness at higher velocity
impacts. The design modifications must be simple retroactive fits to
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FIGURE 6. SUBSCALE TEST ARTICLE - EXPLODED VIEW

the existing design and weight is a consideration. The two primary
design modifications under consideration were:

"* Change the inner container from 0.060 inches aluminum to
0.090 inches steel.

"* Add a load spreader plate between the ends of the warhead
and the inner foam inside the inner container.

The load spreader plate, as the name implies, distributes the
load of the warhead out over a larger area and provides additional
resistance to warhead excursion by the spreader plate deforming
and thus absorbing kinetic energy. Changing the inner container
material and thickness will obviously increase its strength and thus
provide greater resistance to rupturing.

Figure 3b shows the finite element model that was used to
model the spreader plate. The changes of material and thickness of
the inner container were also made. The spreader plate material is
steel and the thickness varied from 0.250 inches to 0.375 inches. The
analysis was done for an end-on impact at 150 ft/sec.
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FIGURE 7. SUBSCALE TEST DROP TEST CORRELATION RESULTS

For a spreader plate thickness of 0.250 inches, the payload
traveled approximately 7-7 inches and bottomed out at
approximately 7.0 milliseconds after impact. Figure 8a shows the
overall deformed geometry of the shipping container. Figure 8b
shows the deformation and equivalent plastic strain of the inner
container end plate and spreader plate. Using a failure criterion of
an equivalent plastic strain of 25.0 percent for mild steel, the outer
container appears to have failed.

For a spreader plate thickness of 0.375 inches, the payload
traveled approximately 7.4 inches and bottomed out at
approximately 7.0 milliseconds after impact. Figure 9a shows the
overall deformed geometry of the shipping container. Figure 9b
shows the deformation and equivalent plastic strain of the inner
container end plate and spreader plate. As can be seen, both the
spreader plate and inner container end plate equivalent plastic
strains are less than 25.0 percent. The maximum strain in the
spreader plate is 19.0 percent and the maximum strain in the inner
container end plate is 21.0 percent.
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>FAILURE HERE
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FIGURE 8. ABAQUS PREDICTION (Tspreader = 0.250 in)

NO FAILURE

a b

FIGURE 9. ABAQUS PREDICTION (Tspreader = 0.375 in)

As a result of this analysis, it is believed that for an end-on
impact of 150 ft/sec and with the suggested design modifications
(spreader thickness = 0.375 inches), the inner container will
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withstand the impact without rupturing. The outer container also
remains basically intact for this impact velocity and it is believed that
the overpack will meet the current design goal from a structural
standpoint.

Some subscale testing was done at the higher velocities with
the design modifications. The effect of removing the inner
container from the overpack and firing it at the outer foam became
an issue at the higher velocities and with the greater mass of the
modified inner container design. The boundary condition along the
side of the inner container was no longer being properly simulated
and as a result the test results were not valid. A new test facility has
been proposed and is being built, which will allow larger scale
testing of the overpack and inner container as a single projectile.

CONCLUSIONS AND RECOMMENDATIONS

The ABAQUS finite element model accurately predicted the
failure location and overall geometry of the inner container for the
existing PlA design. The subscale testing also correlated very well
with the full scale drop test. The finite element model was then
used to determine the design modifications necessary in order to
meet the current design goals.

As a result of 4.he structural analysis, it is believed that the
following two design modifications will enable the PlA overpack
shipping container with a W50 payload to withstand an end-on
impact of 150 ft/sec without rupturing the inner container:

"* Inner container made of 0.090 inches steel.

"* Steel spreader plate (0.375 inches thick) between the W50
payload end and the inner container inner foam.

No effort has been made to date to determine the effect of an
edge impact on the response of the modified design. A new vacuum
launch test facility currently under development at Kaman Sciences
will enable testing of one-fifth scale models (overpack and inner
container combined) for both edge as well as end impacts at
velocities in the 150 to 200 ft/sec regime. No thermal analysis has
been done to date. Testing has been done to determine the ablation
rate and thermal conductivity of the actual foam that was used.
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ABSTRACT

Dynamic response and failure modes of ceramics, ceramic
composites, and generally brittle materials under high-velocity
impact, involve a complex sequence of microcracking, crack coales-
cence and fragmentation, pulverization, and subsequent granular
flow. A fundamental understanding for physically-based microme-
chanical modeling which may lead to computational constitutive
algorithms with reliable predictive capabilities, requires synergistic
basic research to integrate theoretical and experimental mechanics,
mathematical analysis in computational modeling, and material char-
acterization.

The dynamic experiments require recovery techniques, where
specimens are subjected to pre-assigned stress pulse histories and are
then recovered for microscopic analysis to relate the history of load-
ing to the microstructural evolution. The experiments must be con-
trolled to yield reliable time-resolved data over a broad range of
strain rates from quasi-static to greater than 106/s. The theoretical
modeling must include possible crack initiation under compression
during the initial compressive loads, crack interaction and crack
coalescence, pulverization, and finally, modeling of flow of pulver-
ized materials in full confinement, which includes nonclassical
effects such as friction, dilatancy/densification, and possible melting.
The computational algorithm must be accurate, stable, and broad
enough to be able to accommodate fracturing, fragmentation, and
frictional effects, as well as intense pressure, high temperature, and
volumetric changes.
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The results of model experiments, mathematical and computa-
tional analysis, and dynamic recovery experiments, are used to dis-
cuss the micromechanics of compression failure of brittle materials
in general, and under high-velocity impact conditions in particular.
Attention is focused on the mechanics of microcracking in compres-
sion; the influence of confinement on the failure process by micro-
cracking, including brittle-ductile transition; stiffness degradation due
to high-density interacting microcracks; the possible mechanics of
pulverization in compression; and the flow of confined pulverized
materials.

1. INTRODUCTION

Dynamic response and failure modes of ceramics, ceramic composites, and
generally brittle materials under high-velocity impact and penetration, involve
many events which include initial compression-induced fracturing, fracturing
through wave reflection, crack growth and coalescence, and fragmentation and
pulverization, leading to complex interaction between an impactor or a projectile
and a ceramic target. For a fundamental understanding with the aim of capturing
the physics of the process through simple but effective micromechanical models,
essential features of each event need to be identified through recovery experiments
with time-resolved data, involving a broad range of strain rates, from quasi-static
to greater than 106/s. This is then followed by quantitative estimates of stiffness
degradation by dynamic fracturing; modeling of crack growth, coalescence, and
shock-induced metastable states which may result in pulverization; as well as the
development of physically-based constitutive relations for rapid granular flow of
densely packed (containing essentially no voids) pulverized ceramics and the asso-
ciated intense boundary layer which may form adjacent to the penetrator. Figure
l.la is a schematic representation of these processes when a penetrator pierces
into a confined ceramic; Viechnicki et al. (1991) [1]. Various possible damage
regions are identified in this Figure. They include: (1) comminuted and plastically
deformed high pressure/shear region; (2) granular flow region of pulverized
ceramic involving an intense boundary layer; (3) radial cracks; and (4) crack
induced by wave reflection. Figure L.lb shows damage produced by the impact of
a tungsten projectile against a confined alumina sample. Similar results are
reported by Shockey et al. (1990) [2].

This very complex nonlinear response and failure process may therefore be
broken into the following four essential components:

"* Initial fracturing and crack growth

"* Crack interaction and coalescence: fragmentation
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(a) (b)

Figure 1.1a,b (a) Projectile impacting a confined ceramic at high velocity; Viechnicki
et al. (1991) [1]; and (b) Damage produced by impact of tungsten pro-
jectile against confined ceramic target: (A) radial cracks; and (B) corn-
minuted zone (Experiment at UCSD)

* Metastable states: pulverization

* Flow of pulverized (granular) media

* Generation of intense boundary layer adjacent to a penetrator and its effect
on the overall response

It is clear that the composition and microstructure of the ceramic or any
other brittle material, as well as the configuration, geometry, and component pro-
perties of the composite structure, of which the ceramic is a constituent, have
profound effects on the sequence of events outlined above. A basic understanding
of these processes require synergistic research to integrate theoretical and experi-
mental mechanics, mathematical analysis in computational modeling, and material
characterization by microscopy.

This paper reviews some of the recent progress towards addressing the above
issues. The necessary recovery experimental techniques are discussed elsewhere1

and, therefore, will not be detailed in this work; specific results obtained by
exploiting these novel experimental techniques, will be used to illustrate micro-
cracking in compression. In Section 2, compression-induced fracturing and
brittle-ductile transition phenomena are discussed. In Section 3, a model for
estimating stiffness degradation due to closely packed highly interacting

1 See Rogers and Nemat-Nasser (1990) [3], Nemat-Nasser (1991) [4], Nemat-Nasser et al. (1991) [5],
and CEAM Facilities Report (1990) [6].
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microcracks, is outlined. Section 4 deals with the flow of pulverized granules
under confinement.

2. COMPRESSION-INDUCED FRACTURING

Experimentally observed tensile cracking of brittle materials under overall
pressures (even hydrostatic pressures) has intrigued scientists and, indeed, led
Bridgman (1931) [7] to a number of experiments, whose results came to be
known as Bridgman paradoxes. These paradoxes involve tensile cracking of brit-
tle materials under all-around hydrostatic pressure. Based on the results of these
experiments, which seemed to defy intuition, Bridgman concluded (pp. 91-93) [7]:

"For myself, I am exceedingly skeptical as to whether there is any such
thing as a genuine criterion of rupture."

A number of Bridgman's paradoxes were merely hydraulic fracturing
(because the hydrostatic pressure was introduced through pressurized fluids), and
have since been resolved; see Jaeger and Cook (1963) [8], Scholz et al. (1986)
[9], and Nemat-Nasser (1989) [10]. Two of Bridgman's paradoxes do not relate
to hydraulic fracturing and, in fact, bear directly on the fundamental question of
whether or not tensile cracks are produced -- either quasi-statically or dynami-
cally -- in brittle materials such as ceramics and glasses, under overall compres-
sive loads.

Here, we briefly explain one of these paradoxes, called the ring paradox.
The experiment has been recently repeated by Scholz et al. (1986) [9], using a
pyrex glass tube, tightly fitted on a steel rod with a tolerance better than 3iim; Fig-
ure 2.1a. (The tube's thickness is slightly over 1mm, and its length and radius are
about lcm.) The tube is sealed (Figure 2.1b) and the entire construction is
enclosed in a rubber jacket (Figure 2.1c), before submerging in the fluid which is
then pressurized. By direct measurement, through strain gauges placed on the
glass tube and by calculations, it is established that all three principal stresses
everywhere within the glass tube are compressive. Nevertheless, 2 to 6 axial ten-
sion cracks are seen to form from the interior surface of the glass tube, growing
radially and axially, without reaching the exterior surface.

This paradox has been addressed by Scholz et al. (1986) [9] in terms of
model calculations of Nemat-Nasser and Horii (1982) [11]. Scholz et al. [9] con-
sider a preexisting flaw and estimate the required flaw size to produce tension
cracks under the prevailing compressive stress state, using the "sliding crack
model" proposed initially by Brace and Bombolakis (1963) [12], and later
quantified rigorously, as well as confirmed experimentally, by Nemat-Nasser and
Horii (1982) [11]; Figure 2.1d.
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Calculations show that a preexisting flaw of l0.tm is sufficient to produce
such axial tension cracks, under overall hydrostatic pressures of 3 to 7kb. SEM
observations showed these axial cracks emanate from preexisting flaws of about
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Figure 2.1a-d: Bridgman's ring paradox: (a) a glass tube tightly fitted on a steel bar; (b)
its ends are sealed; (c) the entire construction is enclosed by a rubber
jacket before submerging into a fluid which is then pressurized; and (d)
pre-existing flaw PP' and curved cracks PQ and P' Q'

20m, and that each consists of several cracks initiated from different preexisting
flaws; see Figures 2.2a-d. This laboratory experiment not only resolves the Bridg-
man paradox, but also shows the role of preexisting flaws (essentially any micro-
inhomogeneities) in generating tensile cracks in brittle solids under all-around
quasi-static compression.

Compression-induced microcracking in ceramics has been clearly established
in uniaxial stress at UCSD, using novel recovery Hopkinson bar techniques.
These cracks are seen to emanate from microdefects and extend in the direction of
compression, as predicted by the theory of Nemat-Nasser and Horii (1982) [11],
Horii and Nemat-Nasser (1985, 1986), [13,14] Ashby and Hallam (1986), [15]
and Nemat-Nasser (1989) [16]. A vivid example is shown in Figures 2.3a and b,
which are micrographs of a sample of Mg-PSZ, subjected to uniaxial stress in two
separate sequences of loading: Figure 2.3a shows the microcracks extending
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horizontally in the direction of axial compression (first loading). Then the cubic
sample was loaded in compression in a direction normal to the first loading direc-
tion, producing a second set of microcracks, essentially normal to the first set of
cracks,

200)Lm 200/.Lm 20km 20/km

(a) (b) (c) (d)

Figure 2.2a-d: Scanning electron photomicrographs of axial crack in jacketed ring
experiment, at successively greater magnifications, a, b, c, and d. This
was a cycled experiment, and several successive positions of the crack
front can be seen. The view is perpendicular to the fracture plane, with
the inside surface of the Pyrex ring appearing at the bottom of each pho-
tograph. The crack starts at a complex flaw at the center, and an abrupt
jog in the crack plane extends from the flaw. Arrest lines from repeated
pressurizations are visible in a and b; Scholz et al. (1986) [9]

extending in the direction of the second compressive stress; Figure 2.3b. For this
class of ceramics, microcracking is accompanied by phase transformation which
introduces local compressive stresses, arresting the cracks and, therefore, prevent-
ing axial splitting which may take place in uniaxial stress if the applied stress
pulse contains sufficient energy. The phase transformation from tetragonal to
monoclinic crystal structure also involves twinning which introduces additional
microcracking, as shown by the TEM micrograph of Figure 2.3c; Subhash and
Nemat-Nasser (1992) [17].

Similar results have been obtained in other ceramics. For example, Figures
2.4a and b show micrographs illustrating dynamic cracking in a silicon nitride
specimen with crystalline boundary phase, subjected to repeated uniaxial compres-
sive pulses; Sharma et al. (1991) [18]. In this experiment, each sample is sub-
jected to a single compressive pulse of pre-assigned shape and magnitude using
UCSD's Hopkinson bar technique Nemat-Nasser et al. (1991) [5], and then
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recovered for nondestructive characterization, after which the sample is subjected
to exactly the same stress history. Figures 2.4a and b are for a sample that has
been repeatedly loaded 42 times. The sample has split axially into two parts in
the loading direction (axial splitting). Figure 2.4a shows the striations on the frac-
ture surface, and Figure 2.4b shows dislocations within grains.

-• N

(c)

Figure 2.3a,b,c: (a) Axial cracks in Mg-PSZ subjected to uniaxial compression in the
direction of arrows (first loading); (b) the same sample after second
loading applied normal to the first loading. (Note vertical cracks are
produced normal to the horizontal cracks of the first loading); and (c)
high magnification TEM picture of transversely twinned precipitate
and the corresponding selected area diffraction pattern along <100>
axis; Subhash and Nemat-Nasser (1992) [17]

When lateral confinement accompanies axial compression, a dramatic change
in the overall response of brittle materials, especially rocks and concrete, is often
observed. Microscopic observation shows that, in this case also, microcracks are
nucleated at various micro-inhomogeneities, and these cracks grow essentially in
the direction of maximum compression. However, the presence of confinement
seems to arrest further growth of cracks of this kind. Indeed, electron micros-
copy, as well as optical microscopy, seem to suggest a more or less uniform
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distribution of microcracks within the sample, up to axial loads rather close to the
peak stress; see, for example, Hallbauer, Wagner, and Cook (1973) [19], Olsson
and Peng (1976) [20], and Wong (1982) [21]. Close to the peak stress, a region
of high density microcracks begins to emerge, which eventually becomes the final
failure plane. The sample fails by faulting at an angle somewhere between 10 and
30 degrees with respect to the axial compression.

(a) (b)

Figure 2.4a,b: Silicon nitride sample with crystalline boundary phase subjected to
repeated axial compressive pulses: (a) striation upon axial splitting; and
(b) dislocations within grains; Sharma et al. (1991) [18]

Horii and Nemat-Nasser (1985, 1986) [13,14] have suggested that such fault-
ing may be the result of the interactive unstable growth of tension cracks emanat-
ing from suitably oriented sets of microflaws. To verify this, a series of model
experiments are made on plates which contain sets of small flaws and a number of
large flaws; a flaw here is a thin slit (0.4mm thick) containing two thin brass
sheets (0.2mm each). Two identical specimens are tested, one without confining
pressure, the other with some confinement; see Figures 2.5a,b,c. In the absence of
confinement, cracks emanate from the tips of the larger flaws, grow in the direc-
tion of axial compression, and lead to axial splitting, while many of the smaller
flaws have not even nucleated any cracks, Figure 2.5b. On the other hand, when
some confinement accompanies axial compression, cracks emanating from the
larger flaws are soon arrested. Then, at a certain stage of loading, suddenly,

cracks emanating from many small flaws grow in an unstable manner, leading to
eventual faulting; Figure 2.5c.

272



When the confining pressure is large enough, e.g., exceeding 25-30% of the
peak stress, then a transition from brittle failure by faulting to the ductile response
by overall plastic flow takes place. Microscopic observation shows a rather gen-
eral distribution of microcracks accompanying extensive plastic deformation.
(These are at suitably low temperatures, where creep effects can be regarded
insignificant.) The sample may fail by either localized plastic shearing or by bar-
reling. Horii and Nemat-Nasser (1986) [14] suggest a model which seems to cap-
ture the involved mechanism.

(a) (b) (c)

Figure 2.5a,b,c: (a) Specimen containing a row of small flaws and several larger
flaws. (b) Axial splitting under axial compression without lateral
confinement; (c) shear failure under axial compression with lateral
confinement; Horii & Nemat-Nasser (1985) [13]

Normal plate-impact recovery experiments on boron-carbide aluminum cer-
mets at stress levels below HEL (Hugoniot Elastic Limit), suggest compression-
induced microcracking in uniaxial strain; see, Ramesh et al. (1989) [22]. Similar
results have been reported for alumina by Louro and Meyers (1989) [23],
Yeshurun et al. (1988) [24], and Clifton et al. (1990) [25]. These results, how-
ever, are by no means conclusive, and the question of microcracking in
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compression and in the presence of inertial confinement requires a definitive
experimental resolution. Indeed, the brittle-ductile transition model of Horii and
Nemat-Nasser (1986) [14] suggests that increasing confining pressure suppresses
microcracking, leading to ductile flow of nominally brittle rocks. This transition is
shown to depend on the size of the micro-inhomogeneities and, hence, the grain
size, a fact which is supported by the recent study of Cagnoux and Cosculluela
(1991) [26], in plate-impact experiments on alumina. These authors find that
small-grained alumina specimens (2-7pm) show clear indication of ductile
behavior by plastic deformation of the grains, with no indication of microcracking,
at shock stresses exceeding HEL by 50%. In contrast, coarse-grained alumina
(20-70ýnm grain size) showed a high density of microcracks at 20% below HEL.
This observation correlates well with the ductility parameter A which emerges in
the model of Horii and Nemat-Nasser (1986) [14],

A K, (2.1)
ty VhC-

where K, is the fracture toughness, ry is the yield stress in shear, and 2c is the
flaw size. The ductility parameter A for fine-grained alumina is more than three
times that of coarse-grained alumina. Hence, the fine-grained ceramic has
inherently a greater tendency towards ductile flow than the coarse-grained one.

Indirect evidence for compressive damage in alumina has been provided by
Louro and Meyers (1990) [27], who have studied the effect of stress pulses con-
sisting of compression followed by tension and the variation in the tensile pulse
due to compression-induced damage. The tension is produced by encapsulating
the sample in a lower shock-impedance material. The tensile stress amplitude is
shown to be altered by damage due to initial compression pulses of suitable mag-
nitudes. Their analysis suggests that compressive damage precedes and precondi-
tions the material, possibly by microcracking.

As final evidence which seems to suggest the formation of microcracks dur-
ing pre-Hugoniot (pre-HEL) compression waves, we cite work by Rosenberg et al.
(1988) [28] and Yeshurun et al. (1988) [24], who report a significant decrease in
spall strength and an increase in microcrack density with increasing compression
amplitude, especially beyond 30-40kb. This decrease in spall strength has been
interpreted to stem from prior compression-induced microcracking.

The inelastic response of ceramics in shock experiments seems to depend
strongly on the microstructure and physico-chemistry of the material. Inelasticity
in this loading regime may stem from dislocation generation and pile-ups at grain
boundaries and other obstacles, mechanical twinning, phase transformation, and
possibly more importantly, continued microcracking, crack coalescence, fragmen-
tation, and comminution. An important mechanism of pulverization under high
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amplitude shock pressures, may be a sudden and complete disintegration of the
ceramic which is deformed to a metastable state. The interaction energy associ-
ated with microheterogeneities and shock-induced uniaxial straining at extreme
rates, may take the material to a metastable state where the stored energy density
is far beyond what the material is able to accommodate. After a short incubation
time period, the inertially confined, highly pressurized region may simply disin-
tegrate all at once (i.e., over a very short time period), with little or no net change
in its volume.

The exact micromechanisms responsible for such varied inelastic behavior,
have not been established, and the process itself is not well understood; see Kipp
and Grady (1990) [29] for some new experimental observations. No systematic
characterization by detailed microscopy has been done at various post-HEL defor-
mation states. There is no question that a systematic and scientific inquiry of this
kind is essential for a fundamental understanding of the relation among physico-
chemistry and the microstructure of the ceramic, and the corresponding inelastic
dynamic response and failure process.

3. DYNAMIC MICROCRACKING AND STIFFNESS DEGRADATION

In an impact situation, the state of stress, in general, is triaxial. As pointed
out before, the stress differential (i.e., the difference between the principal
stresses) in the presence of microflaws, can produce tensile microcracks. The
sequence, inception and formation of these cracks, is an interesting problem, yet to
be fully understood.

Depending on the microstructure, the rate of loading, and the resulting
stress state, cracks may initiate from dominant flaws and grow dynamically with
increasing loads, or, alternatively, damage may accumulate within individual
sub-grains by dislocation pile-ups, phase transformation, twinning, and other
mechanisms, storing elastic energy and suddenly generating microcracks which
may result in disintegration of the grains and hence, the ceramic. This latter
mechanism is an observation worthy of experimental verification.

This dichotomy in the failure process has been observed in the uniaxial,
repeated dynamic loading of silicon nitride by Sharma et al. (1991) [18]. Silicon
nitride of fully crystalline microstructure develops microcracks which grow con-
tinuously in each cycle of loading; see Figures 2.4.a,b. On the other hand,
repeated dynamic loading of silicon nitride with an amorphous phase present
between grains, accumulates dislocations within the grains (the amorphous phase
traps dislocations), and once a level of damage due to dislocation pile-up is
attained, the grains simply disintegrate; Sharma et al. (1991) [18]. This is shown
in Figure 3.1a,b, which should be contrasted with Figure 2.4a,b. It should be
noted that the overall state in this case is uniaxial stress, whereas in high-velocity
impact, it is uniaxial strain. 275



In general, it is possible that both fracturing modes occur under an impact
condition, see Figures 1.1a,b. In the experiment of Figure 1.1b, the comminuted
region may be the result of the initial intense microdamage precipitated under ini-
tial shock, whereas the larger cracks are the result of both compression- and
tension-induced cracking which may have occurred subsequently.

'I N

(a) (b)

Figure 3.1a,b: Silicon nitride sample with glassy phase subjected to repeated axial
compressive pulses: (a) fragmentation of the sample; and (b) dislocation
pile-up in grains; Sharma et al. (1991) [18]

3.1. Model of Noninteracting Microcracks

The simplest model of damage due to microcracks is obtained when cracks
are assumed to be so far apart that their interaction can be neglected. For prob-
lems of interest here, this is hardly ever a valid assumption. Nevertheless, the
model serves as a starting point, providing some information on strength loss due
to microcracking. Furthermore, it is possible to include the effect of dynamic
crack growth in this model. For this reason, the model is briefly outlined in the
following:
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At each instant the total strain in a given continuum material element of a
damaged ceramic consists of the following contributions: elastic strain, inelastic
strain due to deformation of flaws (e.g., sliding of cracks), crack opening displace-
ment (dilatancy), formation of new tensile microcracks, and deformation due to
overall farfield stresses; see, Nemat-Nasser and Obata (1988) [30]. The model
hence reflects the inelastic deformation of the flaw, in terms of its mechanical pro-
perties and the load history, and the dynamic growth of tension cracks, on the
basis of a suitable dynamic fracture criterion. Once the contributions to the total
strain rate from each flaw and the associated tension cracks are formulated, the
result are averaged over a representative volume element, using a weighting func-
tion which may take into account the anisotropic distribution of the microcracks
caused by stress triaxiality.

Preliminary calculations by Deng and Nemat-Nasser (1991) [311 show prom-
ise. As an illustration, Figure 3.2 is a numerical simulation of stress attenuation
by such microcracking in uniaxial stress conditions. Each profile corresponds to
the stress sensed at a point further along a bar which is subjected to an initially
rectangular pulse.

---- as propagating in a one-dimensiona•t bar
0.030

A
B

--- .- -. --

U2

W1 0.020/\

z

0

I iri

0.000
0.0 0.5 1 .0 1.5 2.0

TIME(SPACE)
Figure 3.2: Stress-pulse attenuation due to dynamic micro-cracking under

uniaxial stress; Deng and Nemat-Nasser (1991) [31]
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3.2. Model of Interacting Microcracks

An alternative mode of comminution is by microcrack interaction and coales-
cence, which may be a preferred failure regime for certain ceramics with suitable
micro-physico-chemistry. This and the preceding overall stiffness degradation
may be modeled by considering a representative unit cell which interacts with its
neighboring cells; its dimensions are defined by the grain size and the mean spac-
ing of the dominant defects. Using the concept of eigenstrain to homogenize a
periodic microstructure, crack growth and its effect on stiffness degradation can be
modeled, taking full account of interactions at the microlevel. This follows the
work of Nemat-Nasser and Taya (1981, 1985) [32,33], Nemat-Nasser et al. (1982)
[34], Iwakuma and Nemat-Nasser (1983) [35], Accorsi and Nemat-Nasser (1986)
[36], and more recently, Hashin (1988) [37], and Nemat-Nasser, and Hon (1989)
[38] Figure 3.3 is a typical result for penny-shaped microcracks periodically dis-
tributed in an elastic solid; Nemat-Nasser, Yu, and Hori (1991) [39]. The formu-
lation allows for including several cracks within each cell, which may curve, grow
toward the boundaries, and coalesce with a neighboring crack.
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x 0.6
0
Z
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CRACK DENSITY PARAMlL:'ER

Figure 3.3: Stiffness degradation of solid by formation of densely packed,
penny-shaped cracks; Nemat-Nasser et al. (1991) [39]
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4. DYNAMIC GRANULAR FLOW

The mechanism of dilatancy accompanying shearing under inertial
confinement, is perhaps one of the most important features of the dynamic flow of
pulverized ceramics.

Based on the micromechanical model of Nemat-Nasser and co-workers
(1980, 1981, 1986) [40,41,42], Balendran and Nemat-Nasser (1992) [43] recently
have developed a simple constitutive model for granular flow, which seems to
capture some essential features of the deformation process. The kinematics is
based on the sliding of layers of granules over each other, through rolling and
frictional sliding of individual granules, which results in overall dilatant shearing
of the granular medium. The dilatation is related to the effective frictional resis-
tance (flow stress), as well as the void ratio which itself is affected by the local
mean compression; void ratio e is the volume of the void divided by the volume
of the solid. The theory is capable of modeling both rate-independent frictional
flow, as well as rate-dependent inelastic deformation. For a two-dimensional
model, the final rate-constitutive equations are quite simple, and encompass the
most essential physical features of the deformation process. These equations are:

0
ok =2K(D T yB), (3.1a)

C= 2G [D'±__.( - ,M) 'T7F (3.1b)

yI= H(+_ 42Gt:D" + M K Da), (3.1c)

at- q' q = ••' )/,(3.2a,b)

B sin80 G a sin(ýj - 8) (.ac
cos(O, -) q T Ga' a co8 '

aMy
nH=(h p + G+MK B)-1 , h =-•. (3.4a,b)

where a is the Cauchy stress tensor, D is the symmetric part of the velocity gra-
dient, p. is the unit deviatoric tensor, q is the effective shear stress, B is the dila-
tancy parameter, a is the noncoaxiality coefficient, and M is the effective frictional
resistance. The upper signs of the symbols ± and w: correspond to continued load-
ing while the lower signs correspond to reverse loading. The model is based on
frictional sliding of layers of granules over each other. The sliding criterion is,

-Mup < q < MLp ,

ML = sin(df + 4zJIcosc, Mu sinin(*f + O2)Icos4. (3.5a-c)

The angles, 1 and Ou, represent the effective frictional resistance to sliding by
interparticle friction as well as the fabric structure, while the angle k represents
the resistance due to isotropic interaction of particles. The angle 01 is for
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continued loading, whereas Of corresponds to unloading and reverse loading. The
dilatancy of the granular mass is governed by,

8 = C' + 02 - O01 for loading,

8 = OF + 02 - O for unloading, (3.6a,b)

where 0,, is the angle of interparticle friction. Equations (3.6a,b) are obtained
from a general balance of energy which ensures overall consistency of the formu-
lation. Details are given by Balendran and Nemat-Nasser (1991) [43]. It is
necessary to define a hardening rule based on the physics of the problem.

To illustrate the effectiveness of this model, Figures 4.1a,b show the
response under monotonic, and Figures 4.2a,b for cyclic shearing under constant
confining pressure for indicated initial void ratios.
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(a) Shear Strain % (b) Shear Strain %

Figure 4.1a,b: Physically-based model of monotonic granular flow: (a) stress-
strain relation in simple shearing; and (b) the corresponding dilan-
tancy; Balendran and Nemat-Nasser (1991) [43]

More germane to the flow of pulverized ceramics is the result shown in Fig-
ures 4.3a,b for pure shearing with no volume change. As is seen, the pressure
quickly builds up to four times its initial value, depending on the value of void
ratio e, for only 10% shear straining. Observe that for a void ratio of e = 0.08 the
shear stress (flow stress) is twice that for e = 0.2%. Note also that this flow stress
is normalized by pressure which is also twice as large for e = 0.08, as compared
with that for e = 0.20.
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Effect of Grain Size on Deformation Stability of Copper
under Quasi-Static and Dynamic Tensile Loading

David H. Lassila and William H. Gourdin

University of California
Lawrence Livermore National Laboratory

Livermore, CA 94551

Abstract

The effects of grain size on the deformation stability of copper deformed in
tension under quasi-static and dynamic conditions have been studied
experimentally and analitically. Oxygen Free Electronic (OFE) copper
samples with grain sizes of 15 ptm and 120 grm were tested. Results of the
tests indicated that an increase in grain size resulted in greater extents of
elongation prior to deformation instability and eventual failure under both
quasi-static and dynamic loading. We have applied the deformation stability
condition of Consid6re to both a simple power law modified to include a
Hall-Petch grain size dependence and the more descriptive mechanical
threshold stress (MTS) model. Calculations of the stress-strain behavior in
uniaxial tension and the instability strain under quasi-static loading are
compared with experiment. Both models predict an increase in the
instability strain with increasing grain size, but the power law, included as a
heuristic, yields a poor overall fit to both the stress-strain and the instability
strain data. In contrast, the MTS model agrees well with stress-strain data
and measured quasi-static instability strains. Under dynamic loading
comparison of the experimental results with analitical predictions were
diffucult due to inherent inacuracy in the dynamic stress-strain data.

* Work performed under the auspices of the U. S. Department of Energy by the Lawrence
Livermore National Laboratory under contract No. W-7405-ENG-48.
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INTRODUCTION

The constitutive behavior of a ductile metal has long been known to control
its deformation stability under tensile loading assuming that the deforming
body is homogeneous and isotropic [1,2,3]. A straightforward analysis
shows that plastic deformation under uniaxial tensile loading is unstable
when

dCY- < c
de'(1)

where a is true stress and £ is true strain. Equality in Equation (1), which
we will refer to as the instability criterion, represents the point during
deformation at which geometric softening due to reduction of the cross
sectional area of the sample (assuming constant volume deformation) occurs
at a greater rate than work hardening of the deforming material. This
instability corresponds to the maximum tensile load and is a necessary
condition for plastic instability, but by itself it does not predict localization
of deformation such as a neck. Gross localized deformation and ensuing
failure generally occurs at some value of strain greater than that predicted by
Equation (1) [4]. The amount of post uniform strain and the rate of growth
of a neck has been shown to be a function of the work hardening behavior
and strain rate sensitivity [5,6,7]. In this work we do not address the
formation and growth of localized necking from an annalitical standpoint,
although we observe the necking phenomenon experimentally. Our purpose
is to assess the effect of grain size, manifested as an effect on constitutive
behavior, on deformation stability as described by Equation (1).

Numerous studies have shown that the flow stress of copper increases with
decreasing grain size according to an expression of the Hall-Petch type
[8,9]:

T (T,c...) = at (T,E...) + kd-1 2 , (2)

where a(T, E..) is the true flow stress, at(T,'P..) is the "frictional stress",
k is the Hall-Petch parameter and d is the average grain diameter. Recent
studies [10,11,12] indicate that k is independent of strain and strain-rate in
the absence of dynamic recrystallization. As indicated by the parentheses,

at(T, '..) and hence a(T,'e..) are functions of the temperature, strain-rate,
and the internal state variables that describe the evolution of the dislocation
structure during deformation 1 . Experiments demonstrate that the work
hardening of copper is independent of grain size when deformed at fixed

1 We note that the strain is not a proper internal state variable, and that the flow stress at
a given strain depends on the deformation conditions (e.g. strain-rate, temperature).
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strain-rate and temperature [12] and further imply that at(T,i...) is
independent of d. When these conditions prevail, application of Equation
(1) to a simple monotonically increasing flow stress leads immediately to the
conclusion that the instability strain must increase with increasing grain size.
A quantitative description, however, depends on the detailed behavior of
(yt(T,i ... ).

In this paper, we first examine, experimentally, the effects of grain size on
the stress-strain behavior, deformation stability and necking behavior of
copper deformed in tension under quasi-static and dynamic conditions. The
experimentally determined instability strains are then compared to the
instability strains predictioned by both a simple heuristic (and non-physical)

expression for at(T,i...) and a realistic description provided by the
mechanical threshold stress (MTS) model [12,13].

EXPERIMENTAL AND RESULTS

Test samples were machined from cold rolled OFE copper bar stock,
nominally 99.98 Cu. The test samples were annealed at 3750 C and 800' C
for one hour in an argon atmosphere to produce nominal grain sizes of
15 gtm and 120 gtm respectively. Optical micrographs illustrating the
recrystallized equiaxed microstructures are shown in Figure 1.

Dynamic and quasi-static testing was performed using 1.00 mm thick tensile
samples with a width of 2.54 mm and a gage length of 5.08 mm. This
sample geometry was chosen to minimize inertia effects in the dynamic test
while still providing a sufficient cross sectional area so that anisotropy due
to single crystal effects in the large grain size materials were not appreciable
[14].

Quasi-static tensile tests were performed at a nominal strain rate of 10-3 s-1
using a screw driven test machine. Loading of the sample was recorded
using a standard strain gage load cell and displacement of the gage section
was measured using extensometers attached directly to the gage section.
These data were used to construct engineering stress-strain curves shown in
Figure 2. The strain at which deformation instability occurs is termed
"instability strain" (e6) and is taken to be the value of true strain at the point
of maximum load on the engineering stress-strain curves. The instability
strains for all tests are given in Table 1. The data shown in Figure 2 clearly
indicate that the large grain size material has a larger instability strain than
the small grain size material. Although the determination of the onset of
localized deformation is somewhat subjective and also dependent on the
measurement technique, direct observations indicated that gross necking
occurred at values of strain 5% to 10% beyond the instability strain, which
is consistent with other work [4].
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Figure 1. Optical light micrographs showing the recrystallized equiaxed
microstructures of the 15 ptm and 120 prm grain size test materials.

Table 1
Instability Strain

Strain Rate Grain Size (gtm) Instability Strain
(true strain)

10-3 15 .30

5 x 103  15 .40

10-3 120 .35

5 x 103  120 .47

Dynamic testing was performed at nominal strain rates of about 5000 s-1
using the split Hopkinson pressure bar technique. Detailed descriptions of
the test hardware and data reduction techniques used in this work will be
given elsewhere [15]. Engineering stress in the sample was measured

288



400 1 I I I

350-

300-

250- 
30 pm

S200
(A-

T 150

100 *Maximum load

-Necking

50 t= 10"-3 S-1

0

-5C I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain

Figure 2. Engineering stress strain behavior of the test materials under quasi-

static loading (i = o10s"1) The instability strains are 0.30 (true strain) and 0.35
(true strain) for the 15 gxm and 120 ptm test materials respectively. Visible
necking occurred at strains considerably greater than the instability points.

dynamically by a transmitter bar. A high-speed framing camera, which
produces approximately 80 back-lit images, was used to record the
deformation of the sample. Selected framing camera images are shown in
Figure 3. Engineering strain in the sample as a function of time was
calculated using values of relative displacement of the gage marks on the
sample taken off the framing camera record. The engineering stress and
engineering strain records as functions of time are phased to construct an
engineering stress-strain plot as shown in Figure 4 for the 15 gtm and
120 pm materials. The instability strains, as defined above, are taken to be
0.40 and 0.47 for the large and small grain size materials respectively.

The strain at which necking initiates in the dynamic tests was determined
visually using the framing camera record. As was the case in the quasi-
static test results, the large grain size material produced a greater extent of
uniform elongation prior to necking than the small grain size material.
As expected, necking occurred at values of strain significantly beyond the
instability strain as shown in Figure 4.
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Figure 3. Framing camera record pictures of a 15 grm grain size test sample
under dynamic loading showing uniform elongation, necking and fracture.
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Figure 4. Engineering stress-strain behavior under dynamic tensile loading
determined using the split Hopkinson pressure bar technique. The instability
strains are 0.40 (true strain) and 0.47 (true strain) for the 15 grm and 120 gm
grain size materials. The occurrence of necking indicated on the stress strain
curves was determined visually using framing camera records.
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Figure 5. True-stress true-strain behavior of 15 pgm and 120 gxm grain size
copper at a strain rate of 10-3s-1. The power law hardening and MTS material
model fits are shown.

ANALYSIS AND DISCUSSION

The true stress-true strain behavior of the test materials under quasi-static
loading, shown in Figure 5, was determined from the engineering stress-strain data given in Figure 3 using the standard conversions. A heuristic
material model was derived by modifying a power law hardening model to
include the Hall-Petch relationship;

c (e) = K , kd(3)

Although the strain is not a proper state variable and Equation (3) is too
simple to properly describe the known deformation behavior of copper, it
nevertheless serves as a convenient means of illustrating, in closed form,
the effect of grain size (manifested as an effect on constitutive behavior) on
deformation stability. The value of k was taken to be 2.78 x 104 MPa -
ml/2 which has been reported to described the behavior of OFE copper over
a wide range of strains and strain rates (Table 2) [12]. Parameters K and n
were determined to be 430 MPa and 0.48 respectively by averaging values
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Figure 6. The instability strain calculated using the power law hardening and
MTS material model plotted against grain size indicating an increase in
deformation stability with increase in grain size. The test data is in good
agreement with the MTS model prediction.

obtained from a least squares fit to data for 15 pm and 120 pm grain size
specimens for strains between 0.2 and 0.3. Application of Equation (1) to
Equation (3) yields

nKii- 1 = Ken + kd-l 2, (4)

which was solved for the instability strain ei using a Newton-Raphson
iteration. The instability strain (El) is plotted versus grain size in Figure 6,
along with values of Ei determined experimentally at a strain-rate of 10-3 S-1.
The instability strain decreases with grain size, dropping rapidly for grain
sizes below about 20 pmn. Quantitative agreement with the test data is poor.
The following analysis using the more descriptive MTS material model
suggests this is because the power law material model provides a poor
description of stress-strain behavior of the specimens (Figure 5).
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The MTS model, described in detail in references 12 and 13, is a physically-
based internal state variable model that provides a realistic description of
OFE copper over a wide range of deformation conditions. Within this
model, the true flow stress is given by

AAUa = Oa MM + Ot M({ 1- [- I,(jjIq1 (5)

where M(T) is the ratio of the shear modulus gi at temperature T to its value

at T = 295 K [12], the activation energy Go = g0ogb3, and i is the true strain
rate. The mechanical threshold stress 2,

A A A S= (Ya + yt, (6)

characterizes the influence of structure on the flow stress through Eq. (5).
The "athermal" portion &a is independent of both temperature and
deformation and varies with grain size according to [12]

2.78 x 10-4 (GPa) (7)Oa = N (~) 7

A .

where d is the grain size in meters. The "thermal" portion At is independent
of the grain size but changes with deformation as specified by the rate of

change of the threshold stress with strain, dAt/dc= dG/d- = 0(Gt,T,i). For

simple experiments in uniaxial tension or compression [12,13], 0 is
described well by the following empirical relationship:

tanh A -

S1- tanh(2) (8)

where Gts is a saturation value of the thermal component of the threshold

stress, achieved at very large strains, and 00 is the rate of change of the
threshold stress with strain at zero strain, given by

2 The mechanical threshold stress is formally defined to be the flow stress at 0 K. For
reasons explained in Ref. 12, it is here referred to 295 K.
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Figure 7. The instability strain for 120 gm copper as a function of true strain
rate calculated using the MTS material model. The dynamic test result is not in
good agreement with the predicted instability strain, possibly due to the
problems associated with measuring load in the test sample under dynamic
conditions.

80 = C1 + C3 e . (9)
A

The saturation stress Ors changes with temperature and strain rate according
to

A /
Ots /n
A = (10)
•tsO iso)

294



Table 2.
Physical constants and non-adjustable model parameters.

Quantity Description Value/units

9 Temperature-dependent shear GPa
modulus: g = po[l + W1 1(T- 300)]

l J0 Shear modulus at 300 K 42 GPa

W4 dp/pdT at 300 K -3.8 x 10-4

Cp Temperature-dependent specific J/kg/K

heat Cp = (4.1868/w)(A + 10-3 B7)

w Molecular weight 63.546 x 10-3 kg/mol

A Cp coefficient 5.41 cal/mole

B Cp coefficient 1.40 cal/mole/K

b Burger's vector 2.56 x 10-10 m

k/b 3  Boltzmann's constant divided by b3  8.23 x 10-4 GPa/K

p Activation energy exponent 2/3

q Activation energy exponent 1

to Strain rate pre-exponential 107 s-1

go Dimensionless activation energy 1.6

go = Go0b 3

A

Ga Athermal threshold stress See Eq. (3)

C1  0 parameter 2.15 GPa

C3  0 parameter 3.4 x 10-5 GPa-s

~ts0 Saturation stress 1.11 GPa

tso Saturation strain rate 5.66 x 1010 s-1

A Saturation activation 0.235
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where n = p.b3A/kT and A is a dimensionless activation energy. Values of
the various parameters are summarized in Table 2 [12].

The MTS model provides a good fit to the quasi-static test data as shown in
Figure 5. The instability strain as a function of grain size was determined
numerically using the true strain rate history of the quasi-static tests and
assuming isothermal deformation (T = 25QC). The results, shown in Figure
Table 2. indicate the experimental and predicted values of the instability
strain are in very good agreement.

Using the MTS model the instability strain was calculated for 120 ptm
copper as a function of (constant) strain rate. For strain rates less than 10-1
s-1 the deformation was assumed to be isothermal, while for strain rates
greater than 10 s-1 deformation was assumed to be adiabatic. In the case of
adiabatic deformation it was assumed that all of the mechanical work was
manifested as an increase in temperature of the deforming material,
calculated using a temperature dependent constant pressure heat capacity.
A plot of the instability strain versus strain rate is shown in Figure 7. In
both the isothermal and adiabatic regimes the calculations predict a linear
increase in the instability strain with increasing strain rate, with the adiabatic
data displaced to somewhat lower levels of strain. The experimentally
determined instability strain under quasi-static loading (i =10-3s- 1) is in
good agreement with the predicted value (see also Figure 6). However, the
dynamic value (E = 5000 s-1) is considerably greater than what is predicted.
The primary reason for this poor agreement is the uncertainty in the
experimentally determined engineering stress-strain curves from which the
values of F-i were determined. Recent work [15] documents the inherent
inaccuracy of this stress-strain response and suggests it is due to stress
wave reflections in the grips. We are currently working on a 3-D computer
model of the tensile Hopkinson bar test to evaluate the dynamic loading of
the test sample and accuracy of the engineering stress-strain extracted from
the test.

SUMMARY

1. Experimental results clearly indicate an increase in the extent of
deformation prior to instability in large grain size material (120 jim)
compared with that in small grain size material (15 jim) under quasi-
static loading conditions. We do not believe we have a valid
experimental determination of the instability strain under dynamic
loading due to inherent inaccuracy in the tensile SHPB stress-strain
information. However, under dynamic loading the large grain size
material exhibited greater extents of deformation prior to the observation
of necking and fracture.
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2. Under fixed deformation conditions, the instability strain calculated
using constitutive descriptions which included a Hall-Petch grain size
parameter indicated a decrease in the instability strain with decreasing
grain size.

3. Instability strains calculated using the MTS model are in excellent
agreement with quasi-static test results. Lack of agreement under
dynamic loading is believed to be due to inaccuracy in the
experimentally determined values of instability strain.
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ADIABATIC SHEAR BANDS IN AISI 4340 STEEL:
MICROSTRUCTURAL OBSERVATIONS

C.O. Mgbokwere
S.R. Nutt
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Division of Engineering, Brown University, Providence, RI 02912

Introduction

The phenomenon of strain localization in metals often occurs in
situations where the strain rate is high, as in high-speed machining and
forming operations, and in ballistic impact. Under these circumstances, metals
often develop narrow zones of highly localized deformation known as
adiabatic shear bands. Material within the shear band undergoes large plastic
strain at a high strain rate, thus causing localized heating and softening. The
development of a shear band often initiates failure, and is thus an important
practical problem. However, the phenomenon is not well understood,
particularly the microstructural events involved in the evolution of shear
bands, the possibility of a phase transformation within the shear band because
of the heat generated, and the microstructural features that contribute to shear
band development. The objective of the present study is to observe the
microstructure of shear bands formed during dynamic torsion experiments on
AISI 4340 VAR steel (HRC 44), and to determine from these observations the
micromechanical processes involved in shear band formation. The approach is
to employ transmission electron microscopy to observe microstructures within
and adjacent to shear bands, and to correlate these observations with
measurements of local temperature, local strain, strain rate, and stress.

Previous studies of shear banding in steels have employed different
approaches ranging from experimental observations to mechanical modeling.
Thermomechanical instability mechanisms have been invoked to explain the
formation of shear bands, and numerical solutions have been developed to
model the process. These have been reviewed by Rogers and Shastry [1],
Hutchison [2], Shawki and Clifton [3], and LeMonds et al [4]. In addition,
analytic modeling of shear localization has been performed by Molinari and
Clifton [5], Wright and Walter [6], and Anand et al [7]. Experimental studies
have determined that it might be possible to classify shear bands according to
whether or not a phase transformation had occurred [8]. This distinction was
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based on the observations of etching behavior, and it was proposed that a
phase transformation to untempered martensite (via austenite) occurred within
the shear band [9]. Wittman et al used TEM observations to investigate the
shear band microstructure in AISI 4340 steel subjected to ballistic loading, but
found no conclusive evidence of phase transformation [10]. They reported a
gradual transition form microcrystalline material at the shear band center to
heavily deformed martensite away from the band. Recently Beatty et al
reported similar observations on AISI 4340 steel deformed by impact of hat-
shaped specimens [11]. Extremely small grains were observed within the
shear bands, but diffraction patterns revealed an absence of austenite and
carbide reflections. It was concluded that no transformation had occurred, and
that the shear band material was simply highly deformed martensite.

In the studies described above, the dynamic experiments employed
loading configurations that involved compressive and/or tensile stresses in
addition to shear. Furthermore, the microscopy observations were often
complicated by extremely small grain sizes, as well as the inevitable
difficulties of preparing high-quality specimens in which shear bands
intersected the transparent regions. In experiments described here, a torsional
Kolsky bar is used to impose a dynamic shear strain on a thin-walled tube
specimen. The experiment allows for measurement of local shear strain, local
strain rate, local temperature, and shear stress. Thin foil TEM specimens are
prepared from the tested samples after shear band formation. Comparisons
between results from the present study with those of previous studies provide
insight into the process of shear band formation and the effects of
experimental parameters on shear band microstructures.

Experimental Procedure

The material selected for this investigation was AISI 4340 VAR steel
tempered to a hardness of 44 HRC (see Table I). A short thin-walled tubular
specimen was machined with a pair of flanges for mounting in a torsional
Kolsky bar, as shown in Figure 1 and described in references [12,13]. The bar
is made of 606 1-T6 aluminum supported along its length by Teflon bearings.
High strain rates are achieved by the sudden release of a stored torque at one
end of the bar. A torsional loading pulse propagates down the bar toward the
specimen while an unloading pulse propagates from the clamp toward the
pulley. The pulse transmitted through the specimen provides a measure of the
shear stress in the specimen as a function of time, while the reflected pulse
provides a measure of the shear strain rate. The stress-strain curve is obtained
by integrating the reflected pulse to give shear strain as a function of time.
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The same loading apparatus and specimen geometry is employed to obtain
quasi-static stress-strain curves.

The torsional Kolsky bar provides an attractive framework for the
study of adiabatic shear bands because torsional loading does not involve the
problems of necking or barreling associated with tensile and compressive
loading. Strain rates of 10-4 /sec and up to 5 x 103/s can be achieved, and
large, well-defined strains can be imposed at known stress levels.
Furthermore, the geometry makes the specimen accessible to high-speed
photography and infrared radiation sensors used for measuring local strain and
temperature during dynamic loading. To facilitate the measurement of strain,
a grid is deposited on the surface of the specimen prior to loading, as shown in
Figure la. Displacement of the grid lines gives a direct measure of the local
shear strain [14]. Measurement of temperature is accomplished using an array
of infrared-sensitive photodiodes with submicrosecond response times. The
infrared emission from the specimen is focused on the diode array by an
optical system consisting of two spherical concentric mirrors [12,131. By
proper calibration, the infrared output is interpreted as a temperature, and the
spatial resolution of the system is approximately 17 gm.

In the present study, tubular specimens were loaded at shear strain rates
sufficient to cause shear bands without complete fracture. Disk-shaped
samples were cored from the thin-walled tube by electro-discharge machining
(EDM) such that the disks were bisected by the shear band. Disks were
mechanically polished and lightly etched with a 3% nital solution to reveal the
shear band. This procedure rendered the shear band clearly visible and
allowed the disk to be positioned on a dimpler stub such that the shear band
was centered under the dimpler tool. Final thinning was accomplished by one
of two methods. Some samples were dimple polished to a thickness of 15 gm
and ion thinned to perforation. Other samples were dimple-polished to 40 gm
and electropolished to perforation in a 20'C solution of 10% perchloric acid
and 90% acetic acid. Because the perforation generally occurred outside the
shear band, the jet-polished samples were ion-milled briefly to extend the
perforation to the shear band. Specimens were examined in a Philips EM420T
equipped with a double-tilt holder and operated at 120 kV.

Results

Shear Experiments
The typical dynamic stress-strain behavior in shear of AISI 4340 steel

deformed at room temperature is shown in Figure 2. The general trend is for
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the plastic flow stress to reach a maximum, followed by a slight decrease with
further straining. The material then deforms at a nearly constant stress, and
finally the stress drops rapidly prior to fracture as shown in reference [14].
The stress-strain response can be divided into three stages, as illustrated by
high-speed photography of the grid lines deposited onto the sample by a
photoresist technique (Figure 2b). In the first stage, the grid lines are inclined
but essentially straight, implying that plastic deformation is homogeneous. A
second stage follows in which the grid lines are slightly curved, indicating
inhomogeneous deformation (the slope of the grid lines is a direct measure of
the shear strain). Finally, in the third stage, the grid lines are discontinuous,
implying the formation of a shear band or possibly fracture. During this
stage, the local shear strain increases dramatically to several thousand percent,
while the nominal shear strain is only about 35%, and the local strain rate in
the shear band can exceed 105/sec.

One important difference between stages 2 and 3 is not apparent from
the results in Figure 2. In stage 3, the strain distribution is strongly dependent
on circumferential coordinate, while the distribution in stage 2 depends only
on the axial position. It is common to have shear localization in one part of
the tubular specimen and not in another, a fact that can be made apparent by
photographing a larger region of the specimen. Another interesting aspect of
the response that merits comment is the small drop in the stress that occurs
during stage 1 at the peak stress. This phenomenon is commonly observed in
dynamic torsion experiments on a wide variety of steels and other metals that
exhibit shear localization, and it appears to be analogous to a yield point
phenomenon. The mobilization of pinned dislocations is one possible
explanation for this observation.

The discrete localization that occurs during stage 3 coincides with a
sharp drop in the load-carrying capacity of the material and a large increase in
local temperature. Using the 17 gim spot size of the optical system, the
maximum temperature detected in the sample was 460'C, which occurred at
the shear band. Figure 3 shows the detector outputs for a typical experiment
on AISI 4340 steel HRC 44. In this test, a shear band formed in the
neighborhood of detector 9, which provided the highest output at 155 psec.
The width of the shear band is only approximately half the width of the
observed spot size of 17 gm, and thus the recorded output represents an
average over the shear band area and adjoining regions that experience less
deformation and less heating. Consequently, the detector output corresponds
to temperatures lower than the peak temperature in the shear band, and it is
calculated that the average temperature inside the shear band is 770'C [15].
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Comparisons of results obtained in dynamic deformation (y - 103 /s)

with quasi-static deformation (y - 10-4 /s) carried out to large strains reveal
two significant differences. First, localization of strain occurs only in dynamic
deformation, and while the final strain distribution resulting from quasi-static
deformation is not entirely homogeneous, the deviations from homogeneous
strain are not large. In contrast, dynamic deformation produces initial
localization that is relatively wide and then becomes concentrated in a narrow
band 5-10 gtm in width. Secondly, the final strain at fracture is much smaller
for dynamic deformation, an aspect that is undoubtedly related to the
localization of shear deformation that occurs. One final distinction between
the two types of deformation is the small drop in stress that occurs at the onset
of stage 2, which resembles a yield point phenomenon. No explanation is
presently available for this observation.

Microstructural Observations
The heat treatment employed for the AISI 4340 VAR steel produced an

average prior austenite grain size of 10 to 20 microns and a martensitic
microstructure. Figure 4a shows that the heat-treated microstructure prior to
testing consisted of packets of martensite laths approximately 1 jim in
diameter and fine carbides. Selected area diffraction patterns from prior
austenite grains showed a secondary spot pattern superimposed on a primary
pattern from the austenite phase (Fig. 4b). The martensite laths within a single
packet generally had a single orientation that was related in a specific way to
the parent austenite grain. Additional reflections from the small Fe3C carbide
phases of various orientations were also present. These carbides tended to be
rod-shaped and nucleated preferentially on the interlath boundaries. Carbides
at the lath boundaries had an average length of 630 nm, while those within the
laths were -150 nm in length.

The microstructure within the shear band was characterized by highly
elongated grains, as shown in Figure 5a. The grains were approximately 35-90
nm in width and 500-800 nm in length, corresponding to aspect ratios of -10,
and were also aligned parallel to the shear direction, indicated by the double
arrow. Grain boundaries were generally sharp and well-defined, and the
configurations were typically straight, with only small occasional curvatures,
as shown in Figures 5a-b. The grain morphologies bore little resemblance to
the lenticular martensite laths shown in Figure 4, which were conspicuously
absent in the shear band, and the misorientations across the boundaries were
usually large (>100). The grains were highly dislocated, causing grains in
diffracting orientations to appear mottled, a consequence of partial overlap of
strain fields of closely spaced dislocations. Extremely fine equiaxed carbides
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appeared as faint "speckles" within the elongated grains, as shown in Figure 5b
(upper left region), although the rod-like carbide morphologies noted in Figure
4 were no longer present.

Some regions of the shear band showed evidence of dislocation cells
within the elongated grains, as shown in Figure 6 (arrow). The cells were 30-
90 nm in diameter and approximately equiaxed, and cell interiors were
relatively free of dislocations. Microdiffraction experiments revealed
misorientations that ranged from < 5' in some cases and >100 in others.
Whether the cell structure precedes or follows the development of elongated
grains is presently unclear.

Structural analysis of the shear band region was performed by selected
area diffraction (SAD). A typical SAD pattern from the shear band is shown
in Figure 7. The sharp bright rings, indexed as a-Fe (bcc), exhibited slightly
non-uniform intensities, although there was no clear evidence of a deformation
texture. The appearance of the rings implies large misorientations between
the elongated grains, which is in accord with results of microdiffraction
measurements of misorientations between adjacent grains. Faint diffuse rings
were also present in the pattern, indicating the presence of small grains of an
additional phase. These rings were assumed to correspond to a carbide phase,
although efforts to match these rings and the corresponding spacings to a
common carbide phase were unsuccessful, and a definitive phase identification
was not possible.

Discussion

Torsional shear experiments at high strain rates on AISI 4340 VAR
steel (HRC 44) resulted in the formation of shear bands accompanied by a
localized increase in temperature. The microstructure within the shear bands
was characterized by narrow elongated grains of ox-Fe with a fine dispersion of
equiaxed carbides. These observations differ substantially from the
observations reported by Wittman et al and by Beatty et al who also performed
studies of dynamic deformation of AISI 4340 steel [10,11]. In their work, a
stepped specimen geometry was used to produce shear bands, and loading
conditions were varied to control the extent of the shear localization. In both
studies, the shear band was characterized by a microcrystalline structure that
gradually changed to highly deformed martensite outside the shear band.
Within the shear band, the local strain was 500% or greater, and equiaxed
crystallites were 8-20 nm across. Interpretation of diffraction patterns led to
the conclusion that the shear band was highly deformed martensite [10,11].
The authors proposed that carbide dissolution had occurred within the band,
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leaving residual carbon in solution that also contributed to local hardening.
There was no evidence of transformation to austenite, and the peculiar etching
behavior of the shear band was attributed instead to the microcrystalline nature
of the band.

In the present study, the shear band microstructure contained narrow
elongated grains of a-Fe, but showed no evidence of martensite or austenite.
The a-Fe grains were considerably larger and different in shape than those
reported by Wittman et al and Beatty et al, despite similar strain rates and
materials [10,11]. However, there are several important differences between
the present experiments and those reported previously. First, the heat
treatments employed were different, resulting in different microstructures and
hardnesses of the samples. A second important distinction involves the
loading geometry employed, which in the present case resulted in a simple
shear stress state, as opposed to a superposition of compressive and shear
stresses. Furthermore, the local strain was only -250%, as opposed to 500-
800% in the work reported by Beatty et al. These differences should have
strong effects on the process of shear localization and may account for the
dissimilar microstructures observed within the shear bands. Interesting issues
to explore in the future include the effects of combining compressive stress
with shear loading on shear band microstructures, as well as the effects of heat
treatments and alloy composition on shear band development.

None of the microstructural investigations reported to date have
produced sufficient evidence to support the occurrence of a phase
transformation to austenite within the shear band, and it appears unlikely that
such a transformation occurs. Nevertheless, there are dramatic changes in the
microstructure that require explanation and may help to understand the process
by which shear bands form. First of all, the martensitic structure is virtually
erased within the shear band and replaced by narrow elongated grains of oa-Fe
which contain a fine dispersion of second-phase particles, ostensibly carbides.
The local strain in the band can be several thousand percent and the local
temperature can reach as high as 770'C. This maximum temperature is
reached for only a few microseconds before the band is quenched and heat is
dissipated to the adjoining material. These conditions appear to be sufficient
to form new grains with orientations that are different from and bear little
resemblance to the parent martensite packets. The new grains acquire
elongated shapes because of the large strains imposed, and have large
misorientations relative to adjacent grains. The processes occurring in the
shear band involve both large strain and high temperature, conditions that
might enable dynamic recovery and/or dynamic recrystallization. The driving
force for dynamic recrystallization is the difference in energy stored in two
adjacent grains, while the driving force for dynamic recovery is simply the
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stored energy of dislocations resulting from plastic flow [16,17]. The first
process should result in new strain-free grains, while the latter should result in
subgrain formation. Dynamic recovery occurs concurrently with strain and
tends to promote structural uniformity, thereby inhibiting the necessary
microstructural configurations needed for recrystallization [18]. Dynamic
recrystallization on the other hand is inhibited by concurrent strain which
creates substructure in grains and thus reduces the requisite differential driving
force [18]. These arguments favor the contention that dynamic recovery is the
dominant process occurring within the shear bands. However, because the
local straining and heating occur simultaneously, the effects of each on the
microstructure tend to be convoluted, making unambiguous interpretations
difficult. For example, grains that might recrystallize might also be
subsequently deformed. Further microscopy study is intended to resolve this
issue.

To what extent carbide dissolution occurs within the shear band, as
suggested in previous reports [10,11], remains an open question. The
additional reflections present in the SAD pattern shown in Figure 7 correspond
to a second phase with spacings of 2.63, 1.61, and 1.22 A, which cannot be
associated with any of the common carbide phases such as X, e, or Fe3 C.
Further diffraction experiments are required to identify this phase, and to
resolve the issue of carbide dissolution within the shear band.
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Figure 1. Experimental apparatus and specimen configuration. (a) Schematic
of the torsional Kolsky bar. (b) Sketch of the thin-walled tubular specimen
with enlargement showing photoresist gridlines deposited on the specimen
surface to facilitate high-speed photography measurements of the strain
localization.
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TABLE 1.

AISI 4340 VAR Steel

(a) Chemical Composition

C Mn IP IS ISi ICu INi !Cr IMo IAl IN 10 H
1.42 1.46 1.0091.0011.28 1.19 11.74 1.89 1.21 1.0311.005 1.00111.0 I

(b) Heat Treatment for the 4340 VAR steel (HRC - 44)

Temperamre Tume Cooling
, ("r) (hours)

Nonnalize 900 1652 In Air Cool
f Audnitize, 845 1553 1/2 Oil Quench

T3425 797 1/2 Oil0ech
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Figure 2. (a) Typical stress-strain curves of 425 temper of AISI 4340 VAR steel,

HRC = 44 for dynamic deformation. Local shear strain values are measured from

the deformed gridlines using high-speed photography. (b) High-speed photographs

of the grid pattern during shear band formation, corresponding to the three stages

of dynamic shear localization.
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Figure 3. Typical output of infrared detectors during the formation of a shear
band in 4340 VAR steel, HRC=44. The 16 elements cover -0.3 mm or 1/8 of
the gage length.
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Figure 4 Microstructure of 4340 VAR steel, HRC=44. (a) Bright field image
of martensitic lath packets. (b) SAD pattern showing martensite pattern
superimposed on primary spot pattern from matrix (B=[1 13]).
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Figure 5. Shear band microstructure. (a) Elongated grains extending in the
shear direction (arrow). (b) Enlarged view of elongated grains within the
shear band showing finely dispersed second-phase particles, possibly carbides.
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Figure 6. Dislocation cell structure within the elongated grains of the shear

band. Cell walls are designated CW, while grain boundaries are marked GB.

Figure 7. Selected area diffraction pattern from the center of the shear band

showing sharp rings corresponding to ci-Fe and faint diffuse rings from

unidentified microphase particles.
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SUMMARY

The thermomechanical behavior of metallic materials under high speed forming
has been simulated with the goal of studying high strain rate deformation
phenomena. It has been observed that the adiabatic shear banding is the major
deformation mode in high speed forming processes. The micro scale nature of
the shear band and the plastic instability associated with it, have made the
numerical simulation of this phenomenon extremely difficult. In this paper, a
Lagrangian finite element code has been successfully used to simulate the
adiabatic shear banding phenomenon for high speed indentation forming
conditions. The simulation has shown that when strain hardening together with
thermal softening effects are considered, a distinct shear band is formed.
Without these thermal softening effects, the generated deformation is
continuous with no evidence of localization or shear banding. The thermal
effects are simulated by solving the unsteady-state heat conduction equations.
An attempt has also been made to use this numerical code to study the high
speed machining process. Chip formation in high-speed machining has been
simulated to be associated with the formation of a segmented or shear-localized
chip and adiabatic shearing is believed to be the principal mechanism controlling
the formation of this segmented chip.

Submitted to Army Symposium on Solid Mechanics, November 4-7, 1991,
Plymouth, Massachusetts
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INTRODUCTION

Adiabatic shear banding is a localized plastic instability phenomenon under
high strain rate (impact) or other high speed loading process. During plastic
deformation, most of the plastic work is converted to heat. If the strain rate is
high, or the material has poor thermal conductivity, there is not enough time for
this heat to dissipate to the surrounding material, and the temperature will rise
locally. This local rise in temperature will then cause thermal softening. If the
thermal softening effect is greater than the strain hardening effect, an unstable
localized material flow will occur, where a narrow band is formed within which
shear deformation is very large. Adiabatic shear banding phenomenon has been
identified as the major deformation mode in high strain rate forming or in high
speed machining of metals. It should be noted that a truly adiabatic deformation
does not exist, since there is always some heat transfer to the surrounding
material. The term "adiabatic" is used mainly due to the fact that a large part of
the generated heat remains within the band [1].

The adiabatic shear banding phenomenon was first recognized by Zener
and Hollomon [2] in the early forties. Since then, a number of theoretical
formulations have appeared in the literature. One of these was performed by
Recht [3] who derived an expression for critical strain corresponding to the
onset localization, and further determined the value of this critical strain for
many materials. Dormeval [4] presented an extensive review of the existing
analytical work on adiabatic shear bands. The influence of heat conduction on
the onset of shear band formation has been studied by Olsen, Mescall, and
Azrin [5]. They concluded that heat dissipation due to conduction does not
affect the initiation of the shear band and becomes important only after the band
is fully developed.

In recent years, there have been many efforts to simulate shear band
formation in forming type deformations using finite element techniques. Ringer
[6], using a Lagrangian finite element code, generated shear cracks in plates
under impact or high strain rate loading by prearranging the path of crack
initiation. Mescall [7] simulated the formation of shear bands under an idealized
pure shear loading. Nasser [8] has modeled formation of shear bands in simple
tension and compression by introducing an artificial defect and a special
hardening coefficient. Needleman [9] used a similar approach to Nasser's to
simulate shear band formation in plane strain compression. More recently,
Batra and Liu [10] studied shear band formation in plane strain compression by
introducing a temperature defect, as opposed to a strength defect as used by
Needleman and also by developing a constitutive relationship with strain rate
and temperature dependent viscosity.

In machining, earlier theoretical efforts were limited to the low speed
orthogonal cutting process. In the forties, Merchant [11] developed the
classical shear angle solution. In early fifties, Lee and Shaffer [12] obtained the
well-known slip-line solution. Recently, many attempts have been made to
simulate the process of machining by finite element techniques [ 13]. However,
none of these simulations has studied machining in the high speed range where
the shear band is formed. In fact, the shear band failure mechanism is still not
completely understood, especially in its relation to machining. Therefore, study
of the high speed machining process with its associated localized shearing
phenomena is a logical extension of the current endeavor.

In the present research, the shear band phenomenon in both the high speed
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forming and machining of metals is studied. A single material constitutive
relationship is imposed in the whole domain and the coupled thermomechanical
effect is used-directly to simulate the unstable localized softening behavior
without introducing any artificial defect or a special material hardening
parameter. A Lagrangian finite element code is used in modeling a high speed
indentation forming process. Effort is also made to use this code to study the
high speed machining process. Chip formation in high-speed machining has
been studied by simulating the formation of a segmented chip. The effects of
the mesh sensitivity and the heat conduction effects in relation to prediction of
shear band width and the onset of instability are also discussed. Additional
results of this research may be found in Chou, et al. [14].

ADIABATIC SHEAR BAND

As mentioned earlier, adiabatic shear, also known as catastrophic shear,
occurs when the local rate of change of temperature has a negative effect on
strength which is equal to or greater than the positive effect of strain hardening.
It usually occurs at very high deformation rates where the heat generated by the
localized deformation is large enough to upset the flow stress increase and a
flow stress decrease results [2]. A number of theoretical formulations have
appeared in the literature to describe the critical strain corresponding to the
onset localization. Most of the theoretical formulations are based on the flow
stress, t1,

"Y-(T,) (1)

where r is a function of the shear strain, y, shear strain rate, 7, and temperature,
0. The differential of the shear stress is then given by,

dtc=[(O') dy+(ý) dy+(k-) dO] (2)

It is believed that plastic instability will occur when

dT=O. (3)

Equations (2) and (3), together with an appropriate material model, Eq.
(1), will provide a critical strain, or strain rate, at which instability will be
initiated.

Various experimental techniques have been developed to study the shear
banding effect in different materials. A comprehensive survey of those
experimental procedures and the materials studied has also been presented by
Dormeval [4].

There have been numerous attempts to model the formation of adiabatic
shear bands in metals. Chou, et al. [14] recently presented a survey on the
numerical work towards simulation of adiabatic shear banding. Ringer [6],
using EPIC-2 code, simulated target plugging in plates under impact. A node

317



splitting technique was used to simulate shear cracks. The results obtained by
Ringer, presented a jagged splitting pattern along the plugged surface. Mescall
[7] simulated the formation of shear bands under an idealized pure shear loading
using HEMP code. They showed that shear bands could occur in materials
whose constitutive description included a plastic instability (a maximum in its
true stress- true strain curve) as opposed to those without such instability.
Nasser [8], Needleman [9], and Batra and Liu [10] have all simulated shear
band formation under simple compression and tension conditions. The
common assumption in all of the above simulations has been the preexistence of
a defect in the workpiece. In all cases, an artificial defect was introduced to the
geometry of the simulation and in all cases simulated shear bands originated
from the point of inhomogeneity. The nature of the defect, based on material
hardness, strength, or temperature differs from one analysis to the other.

The general nature of plastic instability has been well demonstrated by
these finite element simulations. But simulations of more complicated
geometries, those other than simple tension and compression, and without
artificial defects, have not appeared in the literature.

NUMERICAL MODELING

Results of DEFEL code calculation are presented in this paper. DEFEL
[16] is a two-dimensional finite element program originally designed for
dynamic analysis of impact and explosive detonation problems in a continuum
body. The program is based on a Lagrangian finite element formulation, where
the equations of motion are integrated directly and explicitly.

In the present research, a modified version with the heat transfer capability
has been used to study the thermomechanical behavior of shear band formation.
In this version, a slide-line algorithm has also been implemented to simulate
crack initiation and propagation in metals. The latter option has been utilized
together with a simplified fracture criterion based on ultimate strain to simulate
segmented chip formation in high speed machining. Originally, non linear
material behavior was included in the program to account for elastic-plastic
behavior, work hardening, and strain rate effects. Recently, a more complete
material model which includes thermal softening effects (the Johnson-Cook
model) has been included in the code with the proper material constitutive
equations to simulate shear band formation. In the next section, the basic
formulation of the code, the heat transfer computation, the slide-line algorithm,
and the constitutive relationship will be discussed.

Formulation

The DEFEL is based on the hydro-code formulation similar to that used in
EPIC code [15]. The program uses a sliding surface algorithm to simulate
contact between tool and work-piece and any number of surfaces that come in
contact [16]. Complex geometrical shapes can be represented simply by
providing an adequate assemblage of elements. The basic element used in
DEFEL code is the triangular constant strain element. This makes DEFEL well
suited to simulate severe deformation which often occurs in metal forming
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problems and shear banding. Following standard finite element procedures

[17], the equations of motion for the finite element model can be written as

Wvtj = f-p (4)

where M is the mass matrix, q is the nodal displacement vector, f is the external
force vector, and P is the equivalent nodal force vector calculated from the
element stresses. The superposed dots denote differentiation with respect to
time. In general, the vector P is a function of the current nodal displacements
and velocities for non-linear problems, and can be expressed in terms of the
current element stress vector s by

P = 11 BTo dV (5)

where B is the strain-displacement matrix. The advantage of this formulation is
that the process of assembling global stiffness matrix can be bypassed if an
explicit integration scheme and a lumped mass matrix are used. In that event,
the system of Equations (5) are uncoupled into

fq =f P. (6)

in which the subscript i corresponds to the ith component of the nodal
displacement vector q. An explicit integration scheme with central difference
quadrature is used in the DEFEL code to integrate the differential equations in
time. For this purpose, Equation (4) is rewritten in the following form

t t tAt (7)
mi q =f P

where At is the time increment, and the left superscript t refers to the time instant
t. The velocity and displacement of the ith node are then given by

q t+O. 5At =q4tO .5A '+ At qt=i- 5At+ (8)

and

t+A t +t +0.5At(9+Atq

respectively. Combining Equations (7), (8) and (9), the displacement of node i
at time instant t+At can be obtained as

t+At (At)2 [ft t-Atq. m. -P -2%t -Atqit-t(0

Due to the conditionally stable nature of the explicit integration scheme, the
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time increment, At, may need to be readjusted at each time step to ensure
numerical stability. In DEFEL code, the following stability criterion is used
[16]

0.7 H
Atnew = (11)

In equation (11), Hmin is the minimum height of the element, p is the density,
and and g are the Lame constants of the material.

The spherical and deviatoric strain rates are computed from the nodal
velocities, the stress increments and total stress components are then computed.
Proportional unloading technique is used to pull the over-estimated stress
components back to the current yield surface, and various work hardening and
softening models [16] can then be used to establish a new yield surface. This
process is repeated at each time increment.

Heat Transfer Calculations

Capability has been modified to account for heat conduction. Due to the
nature of the formulation of the code, the mechanical and thermal equations
were uncoupled and integrated independently. It was assumed that temperature
varies linearly within the element. The heat flow was obtained from,

qr= -k

qz = -k DT (12)

where k is the thermal conductivity of the material. These equations represent
the rate per unit area at which heat is flowing through the element. The
incremental increase in thermal energy at the nodes, or nodal heat forces, are
obtained by integrating the heat flow with respect to area and time, Equation
(13).

AQi = ni (qr bi + qzCi) At+ A Q P/3.0 (13)

where r is the average elemental radii and At is the integration time increment.
AQP is the plastic work generated within the element during the previous
integration cycle. The updated temperatures of the nodes are then calculated
by,

At÷ t
T1+ t=T +X~,i (14)1 i -- iIMi

where, Tit+At and Tit, are the temperatures of node i at time t+At, and t,
respectively. YQi is the sum of the heat contributed by all elements which
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contain node i, Mi is the mass of node i, and CDi is the specific heat of node i.
The integration time increment based on the heat conduction portion of the
computations requires that

At < pcph 2mi/4k (15)

where p is the density, cp is the specific heat, and hmin is the minimum altitude
of the element. However, since the time increment governed by the mechanical
portion is much smaller than the thermal portion, it is selected as the controlling
increment.

Johnson-Cook Material Constitutive Model

The Johnson-Cook model [18] presents a constitutive equation for material
subjected to large strains, high strain rates, and high temperatures. This
constitutive equation is used for simulations of high speed indentation forming
and machining. The basic form of the model is well suited for numerical
computations since the variables used in the model are calculated in most
dynamic codes. For this model, the flow stress, a, is determined by the
equation

a = [A + B enf] [1 + C ln e*] [1- T *m] (16)

where e is the equivalent plastic strain; e* is the normalized plastic strain rate;
and T* is the homologous temperature, (T - Troom)/(Tmelt - Troom). The
expression in the first bracket gives the stress as a function of strain with strain
hardening coefficient B and strain hardening exponent n. The expression in the
second bracket gives strain rate effects and the third bracket gives thermal
softening effects. Here C is the strain rate coefficient and m is the thermal
softening constant.

Material data for this model are available for OFHC copper, Cartridge
Brass, Nickel 200, Armco iron, Tungsten alloy and DU-.75 Ti [18]. These
data have been obtained from tension tests with varying strain rates, static
tension tests, dynamic Hopkinson bar tensile tests and Hopkinson bar tests at
elevated temperatures. An evaluation of the model was made by performing
cylinder impact tests and comparing the results of the computer simulation to
results of those tests using the Johnson-Cook model. The results showed good
agreement for Armco iron and 4340 steel and reasonable agreement with OFHC
copper.

HIGH SPEED INDENTATION FORMING

A finite element modeling of the high speed indentation forming process
was performed, as shown in Figure 1. More details of the modeling results
may be found in [14]. In this set-up the impactor, penetrator, and stopper were
modeled as rigid material. The work-piece material was tool steel and the
corresponding material constants of tool steel based on the Johnson-Cook
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constitutive equation are listed in Table 1.

Y(413BP)(1+In e*)(1 -T* )m Thmeal Specific
Cond. Heat

MATERIAL A B n C m k Cp

I Gpa Gpa -.-- -- J/nesec. C J/kg. C

S-7 TOOL STEEL 1.538 0.475 0.180 0.012 1.0 45.0 486.0

TABLE 1. Material properties of S-7 tool steel based on Johnson-Cook
equation.

Impactor High Speed

(Rigid) (Vo =50 m/s)

1.07 mm
Indentator

Workpiece (S-7 Tool Steel)

Cushion

(a) Controlled depth-of-indentation apparatus (b) Finite-element representation

FIGURE 1. Initial geometry and mesh assembly of the
high speed forming process

An initial velocity of 50 mn/s was assigned to the impactor together with a
specified depth of penetration of 1.07 mm. Initially, a distribution of mesh was
used such that through a gradual decrease in mesh size, the smallest column of
mesh would be situated directly below the edge of the impactor.

Adiabatic shear banding was successfully simulated, Figure 2, and
comparison with experimental results were encouraging. In this simulation, the
effects of heat conduction were neglected and the process was assumed to be
fully adiabatic. It was assumed that 95% of the work done due to plastic
deformation would be converted to heat.

The examination of the calculated results indicated that the temperature rise
within the shear band is close to the melting temperature of the workpiece
material, and it drops sharply to the materials' initial temperature at the
neighboring elements of the shear band region. The same is also true about the
effective plastic strain of the elements.

In order to verify that the formation of the shear band was the result of the
thermal softening effect, an identical simulation was performed by removing the
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thermal softening portion of the equation. The results did not show any strong
evidence of shear banding and the deformation was spread to a larger region
within the workpiece near the edge of impact, Figure 3.

(a) Experimental observation of shear bands in forming process

(b) Computer simulation of shear band with thermal (c) Computer simulation of shear band without

softening effect, horizontal mesh lines are plotted only thrasoengefchrinalm hlns
are plotted only

FIGURE 2. Adiabatic shear band formation.

Further simulations were performed to determine the effect of mesh size
and shape on the outcome of the simulation. It was observed that the height to
base ratio, or aspect ratio, of the triangular elements used in this simulation,
plays an important role in determination of the direction of the shear band
propagation. For an aspect ratio of greater than 1.5, the shear band was
observed to tilt towards the center of the workpiece. This is clearly not physical
and it indicates that for proper simulation, not only should the mesh size be
small, but the aspect ratio should be less than 1.5.

In the second round of simulations, a region of uniform fine mesh was
placed below the edge of the impactor and the simulation was performed under
identical conditions, Figure 4. The objective was to simulate the shear band
formation without any bias due to uneven mesh size. The results did not show
any significant difference between the two simulations.

Another study was performed to investigate the effect of the magnitude of
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the mesh size. It was not clear whether a smaller mesh size would yield
different shape and width of the shear band. As a result, three different mesh
sizes were selected, d1 = 0.0100 mm, d2 = 0.0050 mm, and d3 = 0.0025 mm.
Figure 5 shows the results for the case where smallest mesh size was 0.005
mm. The shapes of the shear band from the two smaller meshes, d2 and d3
were very similar, indicating that any further reduction of mesh size could not
alter the shape.

STOPPER INDENTOR STOPPER STOPPER

SINDENTOR INDENTOR

(a) Iratiao Geometry (b) No ThermaL Softenig (c) ThermaL Softening

FIGURE 3. Simulation of high speed forming disregarding
the thermal softening effect.

Also, the corresponding temperature distribution of those simulations,
revealed that no significant differences between the two temperature fields
would be observed by further reduction of the mesh size (Figure 6).

FIGURE 4. Initial geometry of forming FIGURE 5.Shear band simulation
with uniform mesh in using uniform mesh
the shear band region. size of 0.005 mm324
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FIGURE 6. Temperature distribution in the shear band region.

However, the width of the shear band, in all cases, is always controlled
by the width of one column of mesh directly below the edge of impactor.
Therefore it is not clear that the simulated width is due to the finite size of the
mesh, or is the true behavior of the mechanics. The computing time of the
smallest mesh size, d3 , was close to 3.5 hours on CRAY-YMP computer. This
long calculation time, which is mostly due to severe deformation of the
elements, makes further reduction of mesh size impractical.

Another factor that could affect the formation of the shear band was the
heat transfer effect. A thermomechanical version of DEFEL code was utilized
to simulate this phenomenon. The thermal properties used, were those of tool
steel, k = 45 J/m-s-OC , and Cp = 486 J/kg-OC. Figure 7 shows the
comparison between the temperature fields of the fully adiabatic, (k = 0), and
the non-adiabatic cases.

21 -

A. 232SC:

(a) Tempemnmee field for a fully adiabatic cas kIt 0. (b) Temperature field for a non-adiabatic case. kIt 45 J/M-S-C.

FIGUR 7Thermomnechanical simulation of shear bands.

In both simulations shear bands were formed at the same stage of the
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forming process and no significant difference between the two cases was
observed. This is consistent with the general belief that in high strain rate
processes heat dissipation prior to onset of instability is small and does not
affect shear banding significantly. It should be mentioned that Figure 7 shows
a very small region close to the surface of the contact and the minor differences
in the temperature field are extremely local.

To assure the proper execution of the thermomechanical code, a simple
heat transfer calculation with the material constants of tool steel was performed
and compared with the existing analytical solutions. The analytical solution of
transient heat flow in a semi-infinite solid was used to solve the problem of a
semi-infinite axisymmetric body undergoing a sudden jump in temperature at
the surface. The calculations showed that at a distance of 0.3 microns away
from the surface, the temperature changed by only 2% after 5 ms. The above
problem was also solved by DEFEL code and excellent agreement was
achieved. In current forming problem, the shear band was formed within the
first 5 ms. This indicates that in the deformation stage of the shear band, heat
conduction plays a minor role.

HIGH SPEED MACHINING

In this section, the DEFEL code is applied in simulation of high speed
machining processes with fragmented chips. A plane strain simulation of
orthogonal metal cutting processes at high speeds was performed. Figure 8,
shows the initial geometry of that simulation, in which a coarse mesh is used to
keep the geometry as simple as possible. For more details, please see [19].

An elastic-perfectly plastic material constitutive equation was used to
simulate the work-piece material and the cutting tool was assumed to be rigid.
A cutting velocity of 25 m/s was assigned to the cutter. The simulation was
primarily intended to provide numerical results to model continuous and
segmented chip formation in high speed machining of metals. Fracture
elements together with the sliding surface algorithm were implemented to
achieve the simulation objectives. Cracks would initiate at nodal points where
the fracture criterion was exceeded, and then extend in a direction normal to the
principal stress direction at that point. The fracture criteria used for this
simulation was based on the ultimate plastic strain of the material. The material
used was an aluminum alloy with the material constants listed in Table 2.

Shear Yield Bulk
Modulus Strength Modulus

MATERIAL G Y K

Gpa Mpa Gpa

ALUMINUM 27.6 517 76.6

TABLE 2. Material constants used in machining simulation

The analysis of the results, in the case of continuous chip generation,
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FIGURE 8. Initial mesh for the plane strain simulation of
high speed metal cutting.

Figure 9(a), showed that the material separating from the workpiece and in
contact with the cutting tool undergoes severe shearing strain. The
corresponding experimental results of continuous chip formation is presented in
Figure 9(b).

Through the application of a simplified fracture criterion based on ultimate
plastic strain, segmented chip formation was simulated as shown in figure
10(a). The corresponding experimental observation of the segmented chip
formation is presented in figure 10(b). The shearing strain is large along the
shear plane which extends from the cutting edge to the free surface of the
workpiece. These results indicate that through the use of a more accurate
material model, such as that of Johnson-Cook, advances could be made
towards proper simulation of segmented chip formation due to adiabatic shear
banding and the corresponding localization of strain and temperature.

(b) Corresponding experimental result

(a) Computer simulation of continuous chips

FIGURE 9. Experimental and computer simulation of
continuous chip formation.
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(b) Experimental observation

(a) Computer simulation

FIGURE 10. Simulation of segmented chip formation

in high speed cutting of metals.

CONCLUSION

Adiabatic shear bands, as a mode of dynamic failure in high speed
forming, were successfully simulated by finite element code. The simulation
under both adiabatic and non-adiabatic cases indicated that heat conduction
effects were minimal at the early stages of localization. There is simply not
enough time for the heat to diffuse to other regions of the material. One could
conclude that the above fact is the basis for shear band formation. The width of
the formed band was not accurately predicted in these simulations and it was
always constrained to one column of mesh regardless of the size of the mesh.
The heat conduction simulation did not show any influence on the width of the
shear band, however more investigation is necessary to determine the factors
controlling the width of a formed shear band.

The initial simulations of the high speed machining process indicated that
the numerical scheme is capable of simulating this complex process. However,
for realistic results more accurate constitutive equations that include temperature
and strain rate effects should be utilized. The effectiveness of the Johnson-
Cook equation as a viable candidate for high strain rate processes is well
demonstrated in this paper. The application of this equation together with a
reasonable mesh density could make the simulation of metal cutting operations
possible.

The formation of shear bands depends on the work-hardening and thermal
softening properties of the workpiece. Although some of these properties have
been documented as mentioned in the section on the Johnson-Cook Model [18],
for most metals the thermal softening behavior under high strain rate loading are
not available. The split Hopkinson bar tests for the selected materials will be
conducted to obtain the needed information for the numerical simulation.
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ABSTRACT

A special experimental technique has been developed by which
adiabatic shear bands can be generated under controlled conditions
to allow for an experimental and theoretical study of adiabatic
shear-banding in high-strength alloys. This allows the systematic
examination of the shear-band microstructure at various stages of
its evolution. The technique has been used to develop shear bands
in AISI 4340 steel for a variety of quenched and tempered
microstructures. Both the strain and strain rate were controlled.
The shear-band microstructure has been analyzed using optical,
scanning electron, and transmission electron microscopy. Parallel
with this work, Hopkinson bar techniques were used to develop
high-strain, high-strain-rate constitutive properties of the material.
These properties were then embedded in a viscoplastic constitutive
model and used in the explicit finite element computer code
PRONTO 2D to study the deformation of the specimen, leading to
initiation and growth of shear bands.

This paper presents observations of the microstructure of shear
bands, results of the high-strain, high-strain-rate constitutive
relations of the material used, and a set of finite-element
simulations of the experiment.
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INTRODUCTION
During high-strain-rate deformation, a localized region (the

shear band) is sheared at a sufficiently high strain rate to preclude
significant heat transfer away from the deforming zone. Many
processes such as turning, reaming, punching, projectile
deformation, and armor penetration can create adiabatic shear
bands in a variety of ductile materials. Material within the band
undergoes both a large accumulated strain and a significant increase
in temperature.

This study aimed at developing a thorough understanding of
microstructural influences on shear-band initiation. "Hat"-shaped
specimens were tested using a split-Hopkinson compression bar
(following Meyer [1,21). Previously, we tested several
microstructures of a VAR 4340 steel to compare resistance to shear-
band formation. These preliminary results showed the technique
was sensitive to microstructural changes and allowed for
metallographic examination of the band at various stages of its
formation[3]. Thus this "hat" test has proved very useful for
qualitative comparisons.

To complement the microstructural study, the hat test itself
has been examined using a phenomenological viscoplastic
constitutive model. The high-strain-rate properties are determined
by a series of standard split Hopkinson compression tests at different
strain rates. These relations are then used in the explicit finite-
element code PRONTO 2D to study the deformation of the
specimen and the initiation and growth of the shear bands. Thus
we have simultaneously examined both the hat test as well as the
predictive capabilities of the model itself.

EXPERIMENTAL PROCEDURE
A VAR 4340 steel alloy was used in the current study. Four

microstructures were examined, all of which have a hardness of
Rockwell C 52. The size and distribution of the grain-refining
carbides was varied by using a two-step austenitizing treatment.
The first austenitization was carried out at either 845°C, 925°C,
1010'C, or 1090°C for two hours. At each austenitizing temperature,
a unique distribution of grain-refining carbides is produced by the
differences in dissolution and/or coarsening rates. The second
short austenitizing treatment at 845°C for 15 minutes was too short
to significantly alter the carbide distribution, but restored a uniform
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austenite grain size. These microstructures have been previously
characterized by Cowie [4,5] and examined in our earlier paper[3].

The specimen configuration used is shown in Figure 1. Under
uniaxial compression, the hat-shaped, cylindrically symmetric
specimen undergoes intense shearing in the regions indicated in
the side cutaway portion of the figure. To limit this shear
deformation, precision machined "stop rings" are placed around the
upper portion of the hat, to halt the shearing process at selected
stages of shear-band formation. From these interrupted samples,
metallographic, SEM, and TEM specimens are produced to observe
microstructure-deformation interactions.

The samples are loaded in compression using a compression
split-Hopkinson bar. The profile of the compression pulse
impinging on the sample through the incident bar is controlled by
placing a copper cushion at the striker end of the incident(input)
bar; see Nemat- Nasser [6] for details.

1-. 9.52 - I

side pu t Baw r O tu shear
spdimensions zopie

in mm a cu f t h d e

perhloic 5% mehnlsouina -Cad 0vls Teser

I-,= ,.9.52 it

19.05
Cu

padb r Input Bar Output Baro i c

Reflected + Transmjjed.eý._._
pulse 01 pulses,

Figure 1. Hat specimen dimensions and split Hopkinson
apparatus.

TEM samples of the sheared regions were made by mechanically
thinning the material to a thickness of less than 0.125mm. Discs 3
mm in diameter were abrasively cut from the thinned material
using a slurry disc cutter. The foils were electropolished in a 5%
perchloric 95% methanol 'solution at -20'C and 50 volts. The shear-
band region polished preferentially, but produced insufficient
electron transparent regions. Ion milling at 15 degrees impact angle
and 4 kV was used to further thin the specimens for TEM
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examination. Both a 300kV Philips CM-30 and a JEOL 200 CX
electron microscope were used.

NUMERICAL SIMULATION
Quasi-static and high-strain-rate simple compression tests were

performed on samples of a single microstructure (austenitized at
845°C). The results were used for constitutive modelling and were
subsequently integrated into the finite-element simulation of the
hat-shaped tests. For this purpose, strain rates from 8 x 104 to

4 x 103 / s were used.
An elastoviscoplastic constitutive model is used, in which the

deviatoric deformation rate tensor D' is decomposed into an elastic
and a viscoplastic part,

D' = D'e1 + D (1)
where

Dv el = lL 9

2G (2)

D •l ' = l_ , :-.
S(3,4)

Above, c' is the deviatoric portion of the Cauchy stress, and lc2' is an
objective stress rate; in the computer code PRONTO 2D[71, the stress
rate is calculated in the Lagrangian triad and hence, the objective
stress rate is defined, using the spin of the Eulerian triad relative to
the Lagrangian triad; see Nemat-Nasser[8].

In the elastoviscoplastic model used here, the plastic shear strain

rate, Y, is assumed to relate to the rate-dependent flow stress in
shear of the material, ty, in the following manner:

,Y= lm)1 -N(AT),0 7 (5)
where "co and yo are the initial flow stress and flow strain,

respectively, at some reference strain rate 7 o, and N, m, and X are
material parameters. In eqn. (5),

AT=j Xýrdt , O<X--
4(6)
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where X represents the fraction of plastic work which is converted
to heat, and is a dimensional parameter which relates the rate of
plastic work to the change in the temperature, AT, of the material;

= 2.7455 x 10-7m3oC/J, for this case.
To fix the material parameters N and m, as well as the reference

quantities co and yo, simple quasi-static and Hopkinson bar
compression tests were used. For the quasi-static experiments, the
temperature effects in (5) can be neglected. At increasing strain-
rates, however, some of the heat generated remains within the
deforming sample, causing thermal softening. For our final
simulation of the hat specimen, the plastic deformation was
localized over a very small region, and since the test duration was
suitably short, one can assume the process was completely adiabatic
with good accuracy. Therefore, we first determined co, yo, m, and N,
using a least-squares scheme. This produced co = 1030 MPa (aY eff =

1790 MPa), yo = 0.015, m = 90, and N = 0.0875. For different strain
rates the parameters X and X change, and had to be fitted to the
experimental data. A simple procedure is to set X equal to a
constant, and then change X for different strain rates. For example,
we obtained X = 0.0019 and X = 1.0, 0.8, 0.72 for strain rates of
4000, 2000, and 1200 sec-1, respectively. Figure 2 shows the true

2500
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U~1500 Constitutive Model

o1000 "' Compression Test

500

0
0.00 0.05 0.10 0.15 0.20 0.25

TRUE STRAIN

Figure 2. True stress vs. true strain curve from
constitutive model and experimental data (o) from split

Hopkinson compression tests. t = 2000/s.
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stress vs. true strain obtained in this manner for a strain rate of 2000
sec-1, along with the experimental data. Similar good fits were
achieved for the other strain rates. For the adiabatic case, X = 1.

EXPERIMENTAL RESULTS AND DISCUSSION
From the stress-time and velocity-time curves obtained during

the hat test, a stress displacement plot is generated by integrating the
velocity-time curve. A typical shear stress vs. displacement curve
for this steel is shown in Figure 3. For these microstructures, the
samples showed a large linear region, and the stresses fell smoothly
after instability. Instability is defined as the point where the shear
stress reaches its maximum value. The shear strain rate is
estimated from combining the measured width of the deforming
zone (from optical cross sections prior to shear-band formation) and

the displacement rate, giving 'pO1.W01x10 5 s1. This shear strain rate
and resulting strain are not entirely uniform, as the geometry of the
sample creates some localization at the outset of the test.

1400

4W0

2W00

.0 0.05 0.10 0.15 0.20

Dispfacement. mm

Figure 3. Typical shear stress-displacement curve of
VAR4340 steel at a hardness of Rc52. This sample was given
its first austenitization treatment at 10900 C.

Figure 4 shows shear band development using optical(4a) and
scanning electron microscopy(4b,c) in typical samples. The shear
bands etch white in nital, typical of the so-called "transformed"
band type. Figure 4b,c are SEM micrographs of a shear band formed
in the microstructure normalized at 925°C. Figure 4c shows this
band near its tip. Note the alignment of the martensite laths with
the shearing direction along the band edges and the absence of any
resolvable grain structure within the band at this magnification.

336



30pm

b

Figure 4. Micrographs of shear bands produced using the "hat"
specimen developed by Meyerl, 2 . a) Optical micrograph of the
shear band. b) Scanning electron micrograph showing lath
realignment and "flow" regions near the edge of the band.
c) Propagating shear band at the tip.
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"Flow" lines (martensite lath realignment) can be detected parallel
to the shear direction within the band.

The maximum shear stress attained was virtually independent
of the four microstructures tested. The same microstructures were
previously studied[4,51 at low strain rates in pure shear, and here
too, no effect on the instability stress was found. However,
significant differences between the microstructures were noted
when energy absorption was considered. Figure 5 plots the energy
absorbed before instability (Ei ) vs. austenitizing temperature

relationship for a strain rate of j,=10 5s 1 ; note the energy peak for
the 925°C austenitizing temperature. Recent work also suggests
that resistance to ballistic failure by plugging in thin plate follows
the same trend[9j.
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Figure 5. Energy absorbed to the point of instability per
unit area sheared, Ei, versus austenitizing temperature.

Dark-field transmission electron microscopy was used to
examine a region near the center of the shear band. By centering
the first bright ring along the optical axis, the microcrystals can be
individually illuminated. Figure 6 is such a dark-field micrograph
where the crystallite size can be determined to range from 8 to
20nm. This size is an order of magnitude smaller than previously
assumed[10] , but otherwise the structure is in general agreement
with earlier TEM evaluations of shear bands[3,10-14]. The change
from a true microcrystalline structure to "normal" heavily
deformed martensite away from the band was gradual, as verified
previously[31 using Selected Area Diffraction Patterns (SADPs) as a
function of distance away from the center of the band.

338



50nm

Figure 6. Dark-field transmission electron micrograph and
selected area diffraction pattern taken from the center of a
shear band. Microcrystals range from 8 to 20nm in diameter.

No carbide spots or austenite reflections could be found near the
center of the band. The extremely fine grain size and rapid quench
rate should increase levels of retained austenite, if any martensite
transformed while shearing. The absence of any austenite reflection
near the center of the band therefore suggests that no
transformation has occurred for this particular case, and that the
increased hardness and white etching characteristics are caused by
the ultra-fine grain size and the breakup/dissolution of carbides.

NUMERICAL SIMULATION RESULTS
The results from the finite-element calculations are given in

Figures 7-10. Figure 7 shows the undeformed and deformed
meshes. The initial transverse element width in the concentrated
shear region is 18 gim, which compares to the observed shear band
width of 9-15 gm in the microstructures studied (compare to Figure
4a). The intense shearing occurs within one single column of
elements, which shows that shear band width will vary with choice
of element size, no matter how small of a mesh size is selected.
Previously Olson, Mescall and Azrin demonstrated this
limitation[151, but it is not within the scope of this work to address
this important problem. The total shear strain profile from point A
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Figure 7. Finite-element meshes. Undeformed finite- element
meshes used to simulate the hat test. a) Entire specimen.
b) Concentrated shear region. Width of elements is 18 pin in
the shear zone.
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Figure 8. Calculated shear strain profile at instability.
(A-B as denoted in Figure 7.)

to point B (see Figure 7) calculated at the instability point is given in
Figure 8. Shear strains range from about 0.1 in much of the band to
0.45 near point B.

Of further interest is the temperature range predicted near the
point of instability. Figure 9 gives the predicted temperature profile
from point A to point B in the concentrated shear region, just before
thermal instability is reached. The temperatures predicted just
before instability, at 34 psecs, are fairly low, with the highest
temperature reaching only 160'C at point B. Just after instability, at
35gsecs, the predicted profiles suddenly jump to extremely high
levels - above 2000°C- and we do not consider the solution to be
valid close to this state (Figure 10). Though the model does predict
thermal destabilization near the appropriate point of the stress-time
curve, the degree of destabilization predicted is too great, and is
largely dependent on the value of X in eqn(5); clearly, X cannot
remain constant over such broad ranges of strain rates and
temperatures. Further work is needed to adapt the constitutive
model to work in this extreme regime of high-temperature, large-
strain, and high-strain-rate deformation, where the shear band may
be regarded as a discontinuity.

The simulation also produces stress-time curves, analogous to
the data obtained in the split Hopkinson hat test. Therefore we can
compare the experimental results from the hat test to the model
predictions. This comparison is shown in Figure 11. Thus, the
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finite-element model based on constitutive relations derived from
simple compression tests gives reasonable results when used to
predict a much more complex experiment, at least to the point of
destabilization. Although some potentially important aspects are
ignored (for example, the effect of confining pressure), the
simulation does closely reproduce the observed experimental
behavior. This suggests that equations of the form of equation (5)
can be used in a variety of complex high-strain, high-strain-rate
approximations after the parameters are fitted to a series of simpler
high-strain-rate tests.

CONCLUSIONS: The hat specimen technique utilized in this study
allows for the systematic examination of shear band
microstructures at various stages of its evolution, and gives a
qualitative comparison of shear band initiation resistance. A
constitutive model and finite-element simulation based on simpler
compression tests at various strain rates is in good agreement with
the experiment up to and including the onset of thermal
destabilization. However, the degree of destabilization predicted by
the simulation is too extreme because of the assumed constant
value of the parameter k. Further refinement of the constitutive
model is possible through a more realistic representation of the
thermal softening effect.
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Figure 9. Simulated temperature profile of shear region at
34gsecs, just before instability (A-B as in Figure 7).
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Figure 10. Simulated temperature profile of the concentrated
shear region at 35gsecs, after instability. The solution is of
questionable validity for this state (A-B as in Figure 7).
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Figure 11. Stress-time curves. 1) Predicted by the finite-
element model (solid line) and 2) Measured during the hat test
(open circles).
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Introduction

Fail-safe airframe designs are expected to arrest certain isolated
large fractures which may imtlate, in some circumstances, under normal
flight loads. For the pressurized fuselage structure in commercial
transport airplanes, this crack arrest capability must be demonstrated in
order for the design to comply with U.S. certification standards (14 CFR
25.571). This requirement was originally established in the 1950s, in
response to accidents involving uncontained fuselage skin fractures ini-
tiated by propeller failures in some of the medium-altitude piston-engine
transports of that era (Figure 1) [1].

Accepted practice for demonstrating compliance with the standard
is a full-scale ground test, in which an explosive charge drives a blade
into the fuselage, creating a longitudinal skin crack approximately one
frame bay in length. The blade is positioned to create the crack midway
between longerons and centered on a frame, which is also cut by the
penetrating blade (Figure 2). This configuration maximizes the local
flexibility of the failing structure and thus provides a conservative test of
the ability of the surrounding structure to arrest a large fracture initiated
by foreign object damage.

Today's high-altitude transports are equipped with much more
reliable turbojet engines, and containment structure is included to deflect
rotor fragments away from the fuselage in the event of an engine failure.
The certification requirement has been retained, but it is now interpreted
more broadly to apply to fractures that might initiate from fatigue as well
as foreign object damage.
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Figure 1. DC-6 fuiselage failure.

CRACK MUST B E ARRESTED

Figure 2. Demonstration of fuselage crack arrest capability.
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Design of damage-tolerant fuselage structure is based on thin-skin
fracture resistance, as characterized by the KR curve [2,3]. For design
purposes it is implicitly assumed that the fracture resistance for a given
skin thickness, as expressed in terms of stress intensity KR, is an unique
function of crack extension independent of initial crack length, Esti-
mation of a critical crack length for fracture initiation then requires only
calculation of the applied stress intensity factor, K4 , and a graphical
construction like the one shown in Figure 3. Such estimates are needed
to specify the blade length for a crack arrest test and also to specify
schedules for fatigue crack inspections in service.

STRESS
INTENSIT STeABILITY

K A

CRACK HALF LENGTH

CRITICAL 1 "
INITIAL STABLE EXTENSION UNDER
CRACK INCREASING APPLIED LOAD

Figure 3. R-Curve estimation of critical crack length.

For the aluminum skin alloys and design stress levels found in typical
civil aircraft fuselage structure, the critical crack length is on the order
of 20 inches, and tests to obtain the KR curve are typically conducted with
10-inch initial cracks in center-cracked panels 20 to 40 inches wide. Thus,
the conditions in both the R-curve test and the airframe are such that
most of the remaining ligaments along the crack line behave elastically
during the stable extension phase.

Conversely, the critical crack length is much smaller, and the
remaining ligaments undergo plastic yielding, when fatigue cracks form
at multiple sites along a fastener row. The in-flight failure of a jet
transport fuselage in 1988 (Figure 4) [4] is believed to have been caused
by the linking of such multiple site cracks and the associated degradation
of the structure's crack arrest capability in adjacent bays.
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Figure 4. N73711 fuselage failure.

It would obviously be useful to have estimates of the critical crack
lengths both for the initial linking in one bay and for overload-induced
linking in adjacent bays (following the first bay failure). Rough estimates
can be made by means of plastic collapse models. These models, which
range from simple net-section failure criteria to numerical analyses with
implicit elastic-plastic boundaries, are based on classical plasticity
theories which do not account for stable crack extension.

Recent experiments on open-hole tensile coupons with hole diam-
eter and spacing similar to typical aircraft construction details have shown
that stable crack extension does occur under these conditions [5].
Therefore, it would be useful to have a material mechanics model which
could account for stable crack extension when the remaining ligaments
have already entered the plastic deformation regime.

Strain energy density criterion

The strain energy density criterion was developed in the 1970s by
Sih [6] as a rational approach to linear elastic fracture mechanics (LEFM)
under mixed mode conditions. The criterion was later found to be
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applicable to ductile fracture as well [7], and is thus a logical candidate
for correlation of stable crack extension phenomena under plastic liga-
ment conditions.

Mechanical and physical interpretation

The criterion is based on a property of the strain energy density
function for a linearly elastic isotropic body (Young's modulus E,
Poisson's ratio v). Sih observed that, under plane strain conditions,
maxima of the ratio of dilatational to distortional strain energy density
U " / U' coincide with minima of the total strain energy density:

U = U,+U(1)

where
l+v21v

U'=-[o +o2 +v(o +(1 2 )]2-_ [+1 1 2 +v(OI+(2 ) 2] (2)
3E [E

1 -2v 1
U - 2= [o 1 +c0 2 +v(0 1 +o 2 )] 2  (3)

and o 1, 0F2 are the in-plane principal stresses.

If Irwin's asymptotic solution [8] for the stress field near the tip of a
macrocrack is substituted into the strain energy density function, then U
is expressed in terms of polar coordinates (r, 0) with origin at the crack
tip. Let S r U be defined as the strain energy density factor, a quantity
independent of r for the asymptotic solution. One can then find extreme
values of U as a function of 0 by finding the angles 0 which extremize
S. For example,

1+v2
S- (3- 4v- cos0)(1 + cos0)o a (4)

8E

corresponds to Mode I uniform remote stress O applied to a crack of
length 2 a in an unbounded sheet. In this case, the minimum S is
defined by 0 = 0, which is also the direction of crack extension. In the
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general case, which includes combined Mode I and Mode II loads, the
minimum S corresponds some other angle 0 , which can be interpreted
as the expected trajectory for crack extension. The physical argument in
support of this interpretation is that the maximum of U " / U" fosters
void formation, growth, and coalescence along the trajectory.

The extension to ductile fracture is founded on another property of
the strain energy density function and the results of numerical experi-
ments. It is well known that, inside the plastic zone surrounding a crack
tip, the asymptotic stress and strain fields deviate from the 1 / J
singularity which characterizes the elastic stress distributions. However,
the strain energy density function retains its characteristic behavior,
U = S / r, independent of the constitutive equation. Therefore, the
strain energy density factor S can still be used to search for minimum
U trajectories.

Of course, the Irwin asymptotic solutions cannot be used in the plastic
zone, and a numerical stress or strain analysis must be carried out instead.
Numerical results for U (r, 0) at several radii can be used to estimate
S (0) on discrete rays, and m i n [ S ( 0) ] can then be interpolated from
these estimates. The technique is compatible with standard numerical
stress analysis procedures, e.g., the finite element method. Reasonable
trajectory analyses can be carried out, in principle, by means of grid
refinement in models of plastically deformed structures approaching
collapse. (In practice, of course, the accuracy of the numerical results
will be degraded by ill-conditioning in the finite element model before
the collapse state is closely approached.)

Analyses such as just described have been carried out, together with
auxiliary calculations to determine the dilatational and distortional
energy components. The numerical results have shown that the ratio
U "I U/U tends to a maximum near the ray on which U is a minimum

[9]. Therefore, one can argue heuristically that in the plastic case, just
as in the elastic case, the ray defined by m i n [ S ( 0)] can be interpreted
as the expected crack extension trajectory.

Crack extension and stability limit

The strain energy density criterion includes hypotheses for crack
extension and a stability limit based on two physical parameters: the
critical strain energy density U c, and the critical strain energy density
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factor S c. The first parameter is obtained from basic material prop-
erties, while the second depends on structure geometry, crack size, and
load at the point of fracture instability.

The critical strain energy density is defined as the maximum energy
density that a material can absorb before the onset of local plastic failure
(microligament necking and void coalescence). For elastic bodies, the
hypothesis is that a macrocrack will extend radially, along the expected
trajectory, as far as there exist material points at which the applied-load
strain energy density exceeds U c, The value of U c is estimated as the
area under the tensile stress-strain curve, based on the conventional
hypothesis that this curve also represents the relation between equivalent
plastic stress and strain. For elastic-plastic bodies, the consumption of
energy at points inside the plastic zone, beforecrack extension, must be
accounted for. Figure 5 illustrates an example, in which the state at a
given material point in the plastic zone is represented by the point P on
the equivalent stress - equivalent strain diagram. The energy U ( P) has
already been consumed, and thus, the crack extends to the radius:1

S
Uc-U(P)

where S is the strain energy density factor corresponding to the applied
load.

1 Interpretation of the extension radius is straightforward in pure Mode
I cases, where the crack extends along its own line. In mixed mode cases,
one can take small load steps and interpret the incremental results as a
piecewise linear approximation of a curved trajectory. Incremental
analysis requires the tracking of strain energy in the volume ahead of the
extending crack, so that the energy accumulated up to the last increment
can be subtracted from U c before the next extension increment is cal-
culated.
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STRAIN r RADIUS

CRACK TIP

Figure 5. Strain energy density criterion for stable crack extension.

The extension is presumed to be stable as long as the critical strain
energy density factor Sc is not attained. In the Mode I case, where the
crack extends along its own line, the stability criterion can be expressed
equivalently as r < r c, where r c S c / U c. The value of S c must be
derived from the results of a fracture test under conditions similar to
those of the intended application. Under LEFM conditions, for example,
the plane strain fracture toughness is simply substituted in the Irwin
asymptotic solution to find:

Sc 1 + v)(( 1 -2v) (K c)2 (6)
2ntE

However, cases of practical interest involving ductile fracture require a
numerical analysis of the test specimen, with the critical crack subjected
to the critical applied load, as experimentally determined.

The conventional approach for isolated long cracks is to characterize
the behavior by means of an experimentally determined R curve. The
strain energy density criterion can be considered as an alternate approach
in which the stable segment of the R curve is estimated from the critical
state data.- The R-curve method is not valid when plastic collapse

2 One can also employ three dimensional stress analysis to make rational
extrapolations of thickness effects, whereas the R-curve method requires
interpolation between tested thicknesses.
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controls the stability limit, e.g., under multiple site damage conditions
like those mentioned in the introduction. However, it is still possible to
apply the crack extension part of the strain energy density criterion to
such cases, using only the U c parameter, as illustrated in the following
section.

Example application

The tensile coupon experiments mentioned in the introduction [5]
were chosen as a test case. The coupons were designed to produce crack
extension under conditions similar to multiple site damage along an
aircraft skin splice, except that the critical nominal stress was approxi-
mately twice the typical maximum design stress for aircraft fuselage skins.

Coupon configuration and test procedure

The coupons consisted of clad 2024-T3 aluminum sheet, 4 inches
(100 mm) wide x 0.04 inch (1 mm) thick, with one row of three drilled
holes 3/16 inch (4.8 mm) in diameter and 1.0 inch (25 mm) on center.
The central hole was symmetrically notched, and fatigue loads were
applied to produce sharpened cracks. The inner edges of the outside
holes were then notched to produce a final configuration for the
experiment, such that the cracks and notches all had approximately the
same initial length a o in a given coupon (Figure 6). Coupons with a o

- 0.15, 0.22, and 0.26 inch (3.8, 5.6, and 6.6 mm) were tested.

3/16 a0

I I S1.0 1.0 -
I I

ALL DIMENSIONS: INCHES
1 in. = 25.4 mm

Figure 6 Initial configuration of test coupons.

355



The objective of the experiment was to measure crack extension
resistance curves analogous to the R curves which characterize long crack
behavior. Each coupon was loaded under quasi-static conditions while
the extensions of the central cracks were visually monitored through a
20X measuring microscope. Extensions less than approximately 0.005
inch (0.1 mm) could not be resolved, but enough data for larger extensions
was collected to define the asymptote regions of the resistance curves.
Individual extensions A a L and A a R were recorded for the left and
right cracks, but the average extension:

1
Aa= -(AaL + AaR) (7)

2

is used here for comparison with the strain energy density analysis.

Analysis assumptions, model and procedure

The stress-strain curve for the coupon material was also measured
as a part of the test program [5]. Figure 7 illustrates the curve, and Table
1 summarizes the material properties. The experimental data were fitted
with a Ramberg-Osgood equation:

E =- -+ B(8)

with the values of E, B, n as given in Table 1. Equation (8) is considered
to define the relation between equivalent stress a and equivalent strain
E . The value of U c was obtained by integrating the Ramberg-Osgood
equation up to the material ultimate strength.

356



100
&xperimental data

80 Curve fit

• 60

• 40

20

0 L L L L L L ' L

0 0.02 0.04 0.06 0.08 0A 0.12 0.14 0.16 0.18 0.2
Strain (in/in)

Figure 7. Stress-strain diagram for 2024-T3 coupon material.

Table 1. Material Properties Assumed for Analysis.

Yield Ultimate U c Ramberg-Osgood constants
strength strength

f y ftu

ksi ksi ksi E msi (GPa) n
(MPa) (MPa) (MPa) B ksi (MPa)

49.8 67.2 12.5 10.00 (69.00) 15.26
(343) (463) (86.2) 74.81 (515.8)

Elastic-plastic finite element analysis was carried out on a plane-stress
quarter symmetric model of the coupon, using bi-cubic isoparametric
displacement elements in the grid shown in Figure 8, in accordance with
the following approximate procedure. The finite element grid was confi-
gured to match the initial crack length a,,, and was loaded by a total
nominal stress corresponding to the first experimental data point. The
elements surrounding the crack tip were configured with mid-edge nodes
at the 1/9 and 4/9 points to represent the crack-tip singularity in the
assumed displacement fields. The strain energy density factor S (0 = 0)
was estimated from the numerical results for U (r , 0), and the corre-
sponding cumulative crack extension was calculated from:
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(a) full model

(b) detail of region between holes

Figure & Quarter-symmetric model of test coupon.

Aa=rr S(O) (9)
Uc-U(r)

The applied stress was then increased, the mesh updated to the new crack
length, and the procedure was repeated until ill-conditioning error
intervened.
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Results

The results of the strain energy density analysis are compared with
the experimental results in Figure 9. Solid and open symbols represent
the analytical and experimental data points, respectively. Lines between
data points have been included for visual guidance but have no physical
or numerical meaning. The calculated crack extensions appear to be in
reasonable agreement with the experimental observations. The calcu-
lations indicate the level of the resistance curve asymptotes but are not
able to precisely track the asymptotes as the plastic collapse state is
approached.

40
0.15 in

. .... l ........ e.......... experim ent
........... .............. ............................ a-..'- ------ '6"• 0.22 in

experiment,30. _ --

0.26 in
experimen

0.15 in

-) 20 analysis

= 0.22 in.S~ analysis

10 0.26 in.
analysis

0 8.1 .02 0 ,3 .04 0.05
Stable crack extension (inches)

Figure 9. Comparison of results.

Discussion

The agreement between the analytical and experimental crack
extension resistance curves was found to be reasonable but not precise.
One obvious reason for the lack of better agreement is the approximate
procedure used in the elastic-plastic finite element analysis. Although
the complications of an incremental analysis were avoided, the approx-
imate procedure must be expected to produce increasing error as the
magnitude of the finite crack extension increases.
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Another reason is the presence of some experimental error in the
crack extension measurements. The microscope resolution limit men-
tioned earlier represents a band of uncertainty amounting to 25 to 50
percent of the qieasured extensions for which calculations could be made
(see Figure 9).-1 Therefore, no final judgement about the accuracy of the
strain energy density analysis can be made from the present comparison
of results.

At first glance, it may appear inconsistent to use a global plane stress
analysis for application of a fracture theory which is supposed to account
for thin-section effects. In fact, however, there is no difficulty in recon-
ciling the two contrasting modes of failure because one (crack extension)
is local and the other (plastic collapse) is global. In other words, both
crack extension and plastic deformation can contribute to the reduction
of structural stiffness until the critical state of global instability is reached.
The stationary property of the strain energy density function automati-
cally accounts for the apportionment of energy between the two modes.
The prediction of ductile crack extension leading up to global instability
of the structure by plastic collapse has been made [11] where the collapse
load estimated from limit analysis is a special case of the strain energy
density theory.

The examples considered here involve failures totally controlled by
plastic collapse. If the theory were to be applied instead to cases on the
borderline between plastic collapse and ductile fracture, numerical
analysis of the critical load/crack configuration could be carried out, and
the thickness effect would be accounted for via the empirically deter-
mined critical strain energy density factor S c.

Another perspective on the strain energy density analysis is gained
by comparison with net section theory. The net section failure criterion

3 The visual resolution problem led to a later investigation of AC
potential drop techniques as a means for obtaining continuous crack
extension versus load data [10].
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is a widely accepted conventional method for estimating the strength of
mechanical joints under plastic collapse conditions. The critical nominal
stress is calculated as:

_A NET

OCR- A t (10)

where A is the nominal cross-section area, A NET is the net section area
(nominal area less the area occupied by holes, cracks, and notches), and

f is an assumed material property called the flow stress.

Equation (10) represents the physical hypothesis that the stress
distribution is uniform tension across the net section at the collapse state.
The hypothesis is justified by the known tendency of plastic deformation
to smooth out uneven stress distributions along fastener rows in skins.
There is no universally accepted rule for defining the flow stress, which
is generally assumed to lie somewhere between the yield strength I
and the ultimate strength J,.

Values of I ,y and I , for the coupon material were given in Table
1. The net section strength estimates for the original and modified
coupons with a o = 0.15 inch (3.8 mm) are summarized in Table 2.
Comparison with Figure 10 shows that the strain energy density analysis
produces essentially the same strength estimates as the net section cri-
terion with ft, = J Ly.

Table 2. Net Section Strength Estimates.

Quantity ANET OCR

A ksi (MPa)

Based on I ty Based on I Lu

Value 0.71 35 (241) 48 (331)
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On one hand, the preceding comparison is encouraging because the
strain energy density analysis produces results in good agreement with a
widely accepted conventional analysis method. On the other hand, why
make the extra effort to carry out a strain energy density analysis? The
answer is that multiple site damage in actual structures often propagates
under mixed mode conditions. The net section criterion cannot be
applied to such cases because there is no obvious way to define the net
section.

The jet transport fuselage failure mentioned in the introduction
provides a good example. This failure occurred along a splice at
mid-fuselage height (Figure 4), where the skin is subjected to combined
biaxial pressurization stress and transverse shear due to body bending.
Multiple site cracks still in the slow propagation stage found at similar
locations elsewhere on this fuselage were oriented at about 200 from the
splice line (Figure 10). Inspections of other aircraft following this
accident revealed some multiple site cracks, at a later point in the slow
growth stage, with curved trajectories like the schematic in Figure 11.

Figure 10. Inclined multiple site fatigue cracks in N73711 fuselage.
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Figure 11 . Typical curved trajectories of multiple site fatigue cracks.

Conclusions

The strain energy density criterion was evaluated as a method for
determining the critical length of multiple site cracks, which can suddenly
link to form a long crack when the stability limit is attained. The stability
limit in such cases is known to be controlled by a plastic collapse
mechanism, for which conventional R-curve analysis is not valid. The
evaluation was performed by comparing the strain energy density analysis
with the results of a tensile coupon experiment in which multiple site
crack linking was simulated under Mode I conditions. The accuracy of
the criterion could not be precisely evaluated because of experimental
error in the visual measurement of crack extension, and because of
approximations made in the numerical stress analysis from which the
strain energy density was calculated. However, the following preliminary
conclusions can be drawn from the results.

Within the limits of experimental and numerical error, the strain
energy density analysis appears to provide reasonable predictions of the
stable extension observed in Mode I cracks similar to multiple site cracks.

The predictions of crack extension are limited by capability of the
numerical stress analysis. In the present case, the numerical analysis
could not provide valid results for crack extensions which closely
approached the stability limit. Nevertheless, the crack extension which
was predicted was sufficient to allow estimates of the critical applied
stress asymptote.

The stress asymptote estimates were found to be in good agreement
with estimates made from the net section failure criterion when the
material yield strength was used to represent the net section flow stress.

Strain energy density analysis is thus a logical and credible approach
to damage tolerance evaluation of multiple site cracking in actual
structures, where mixed mode conditions prevail, and where the stability
limit may be either controlled by plastic collapse or on the borderline
between plastic collapse and ductile fracture.
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Abstract

To better understand the relationship between cavitation and crack growth in elas-

tomers, a local cavitation surface surrounding a Mode I plane strain crack was identified.

A finite element analysis of this crack in a NeoHookean material was performed under
the assumptions of small-scale nonlinearity, and the resulting crack tip field quantities

were compared to the theoretical asymptotic solution for this problem. Far from the

crack tip, the linear elastic asymptotic solution was found, while the nonlinear elastic

asymptotic solution was identified in a small region surrounding the crack tip. All load

parameters in the nonlinear elastic asymptotic solution were determined either analyti-

cally or from the computational results. The computed in-plane stress field showed close

agreement with the theoretical solution for this problem. After verifying the accuracy

of the numerical crack tip stress fields, a local cavitation surface enclosing the crack tip

was identified. The cavitation surface predicted that the locus of potential cavitation

extends to 0.015 Japplied/PL in front of the deformed crack tip.

1 Introduction

Crack growth in thick elastomers is often preceded by cavitation near the
crack tip [1, 2, 3]. The relationship between cavitation and the onset of
crack growth is not well understood and was explored in this investigation
by examining the cavitation locus surrounding a Mode I plane strain crack.
A new theory developed by Hou [4], which defines a local cavitation surface
under nonsymmetric loading, was applied to the finite element results for
a plane strain Mode I crack in a NeoHookean material under small-scale
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nonlinearity, in which a dominant linear elastic crack tip field surrounds a
nonlinear crack tip region. The resulting cavitation locus is discussed.

Ball [51 analytically modelled cavitation under radially symmetric loads
in the context of finite elasticity. He assumed that cavitation was a conse-
quence of material instability. A solid sphere was subjected to a radially
symmetric load across its outer radius. As the load was increased, a bifur-
cation analysis showed that, at a critical stress level, it became energetically
more favorable for a cavity at the origin to nucleate and grow. This stress
level, a critical value of the hydrostatic tension, jii/ 3 , where rij denotes
the Cauchy stress components, predicts the onset of void formation and
its growth. In the general case of a large body containing a void whose
initial radius is infinitesimally small(bounded), the void will remain small
until the applied load reaches some critical value, at which the void will
grow without bound. Ball thus demonstrated that a critical value of the
hydrostatic tension can predict either the onset of cavitation or the un-
bounded growth of a pre-existing microvoid. For a NeoHookean material,
the critical value of the hydrostatic tension is 2.5 times the infinitesimal
shear modulus, P.

Hou and Abeyaratne[4] extended Ball's work by considering a finite
body containing a pre-existing spherical void under uniform remote load-
ing. A deformation field was constructed which characterizes a broad field
of kinematically possible deformations of a cavity in a large body. Using
this specific family of deformation fields, the principle of virtual work was
then invoked to approximately solve for a cavitation surface in terms of the
remote principal stresses, ri. For a NeoHookean material, they describe a
cavitation surface by

(473 - 7-1 - r2)(472 - r- - T3)(471 - 73 - 7-2) - 125/13 = 0. (1)

As the stress field approaches that of hydrostatic tension, the cavitation
surface reduces to Ball's criterion, where the hydrostatic stress equals 2 .5y
at the site of cavitation. Hydrostatic tension represents the minimum value
along a cavitation surface for a NeoHookean material so that, under non-
hydrostatic loading, the cavitation surface is found along principal stress
states of greater magnitude: 7l > 2.5y.

In this analysis, the cavitation surface defined by equation (1) was ap-
plied to a plane strain Mode I crack. This condition was selected because
cavities have been found in vulcanized rubber cylinders [3] and in elas-
tomer cubes [6]. Stress analyses of both test specimens indicated that cav-
ities were located at sites of maximum hydrostatic tension, as predicted
both by Ball [5] and Hou [4]. The cylindrical test specimens have been
extensively studied to define the site of cavitation. Gent and Lindley [3]
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performed an approximate stress analysis based on linear elasticity to show
that the stress state was hydrostatic and that cavitation occurred at sites
of maximum hydrostatic tension. Finite element analyses by Stringfellow
and Abeyaratne [7], and Hou and Abeyaratne[4] confirmed that the stress
state is only approximately hydrostatic and that when both cavitation cri-
teria discussed above were applied to the finite element results, a cavitation
surface could be accurately correlated with the locus of cavity nucleation
obtained from experimental evidence. It can be concluded that these cav-
itation theories have been successfully applied to experiments on rubber
materials under axisymmetric loading conditions.

If cavitation does precede crack growth in elastomer materials, then
the local cavitation surface surrounding the crack tip region may provide
insight into potential sites of void growth. The mechanical crack tip field
was obtained through finite element analysis under the assumptions of
small-scale nonlinearity. The cavitation surface in equation (1) was then
applied to the mechanical crack tip stress field.

2 Problem Description

Consider a stationary plane strain Mode I through-thickness crack of length
L, in a thick body of NeoHookean material as shown in Figure (1-a). A
NeoHookean material is incompressible and its strain energy, W, is ex-
pressed as

W = p/2(I - 3) (2)

where I = ,\ + A2 + A2, the first strain invariant, and Ai are the stretch
ratios.

A small tensile stress, a, is applied normal to the plane of the crack
and thermal and body forces are absent. The surfaces of the crack are
traction free. A Cartesian coordinate system xi is introduced at the tip
of the crack, representing the undeformed coordinate system, where polar
coordinates can be defined by

x, = r cos(O), x 2 = r sin(O). (3)

A deformed coordinate system, Figure (1-b), y, is also introduced at the
crack tip, and

Yi = xi + ui, or -xi = Fij, (4)

given the displacement field, ui and the deformation gradient field Fij.
Under the assumptions of small-scale nonlinearity, the linear elastic

asymptotic field is confined to a small region, compared to the crack length
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and the geometry of the body, around the crack tip where small geometry
changes and linear elastic material behavior are present providing the ap-
plied loads are sufficiently small. As r -- 0, these conditions are physically
violated and the small region containing the linear asymptotic solution
encloses a smaller region where large geometry changes and nonlinear ma-
terial behavior are present. It is in this smaller region where the nonlinear
elastic asymptotic solution is found.

In this problem, the linear elastic asymptotic field [8],
K1  0[ . 0.30-cos-Io-sm01= -sins-T
KI 0 i 0 . 30)

022 K cos0 1 + si 0 s+ o (r+/2) (5)O2= -sin- +o
-' 2V7 r 2 2 2_

a2= K cos-c 0ssin +0 or/2)
,ý/_,rr 2 2 (

where aij are the nominal stresses and KI is the stress intensity factor,
was applied as consistent nodal point forces by integrating the stress field
along the outer radius R of a semicircular crack tip region. The linear
elastic asymptotic solution will dominate the stress field at large radii.
However, close to the crack tip, as r -- 0, the nonlinear elastic mechanical
crack tip field [9, 10],

r*1 "-' ýb2(1 -cos0)
2

T22 -,• Ea-2 -a 1

4

2 2
2 0 1•3/a2 0 2 30)

Y " brsin 2+-a r 2cos - cosT

Y2 ar 1/2 sin - -- sin 0

referenced to the polar undeformed coordinate system (r, 0), will be present,
where ;i, denote the Cauchy stresses, and a, b, and d are independent load
amplitude constants. When the nonlinear asymptotic field is applied to a
particular energy conservation integral, the J-integral [11], an analytical
solution [9, 10, 13] for the load amplitude parameter, a, can be found in
the limit as r --+ 0. Consequently, only the two remaining load ampli-
tude parameters, b and d, need to be determined from the finite element
analysis, to be shown below. A comparison of the linear and the nonlinear
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asymptotic fields in equations (5) and (6) shows that, while the order of the
singularity, Vr-, is the same for each in-plane stress component in the linear
elastic solution, the order of the singularity differs for each stress compo-
nent in the nonlinear elastic crack tip field. The T22 stress component has
the strongest singularity, 1/r, and is independent of 0. Component T11 is
a function of theta only and is independent of r. Only r12 is a function of
both r and 0 and the order of its singularity, Vr7, is the same as the linear
elastic solution.

For a crack extending in the x, direction, the J-integral can be expressed
as

J = r[Wnl - siu,,lldS (7)

where W represents the strain energy, nj is the unit normal in the x,
direction, and si is the nominal traction vectorn The J-integral is path
independent when evaluated along any suitable contour r which encom-
passes the crack tip, as shown in Figure (1-a), while dS is an element of
arc length along F.

The load amplitude constant, a, in the nonlinear asymptotic solution
equation (6), is determined by the direct evaluation of the J-integral, equa-
tion (7), along a circular contour of radius r. Noting that the J-integral
and the energy release rate are equivalent under small-scale nonlinearity
[12],

J = K, 2 (1 - v)/2p, (8)

where the Poisson ratio v equals 1/2 for incompressible materials. The
load amplitude constant, a, can now be expressed in terms of the stress
intensity factor as r --+ 0 by

K1a- -(9)

3 Finite Element Model

Only the top half of the crack tip region was modelled in the finite ele-
ment analysis because this problem possesses reflective symmetry about
the xl-axis. The finite element model was a semicircle whose outer radius,
R, is equivalent to the crack length. The finite element mesh, Figure (2),
consisted of two regions, a refined mesh, where accurate crack tip field
quantities can be found, and, inside the refined mesh region, a coarse mesh
close to the crack tip. Both the refined and the coarse mesh regions were
composed of rings of eight-noded pressure hybrid isoparametric quadrilat-
eral elements[14]. Within each ring, all elements had equal angular extent
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and the same radial length. For background information on this mesh
design, the reader is referred to reference [13].

-The coarse mesh extended radially to 10-'R and had four rings. The
first ring was composed of three elements of length 10- 9 R. In each sub-
sequent ring, the number of elements was doubled so that the fourth ring
contained twenty-four elements. Element radii in the remaining three rings
of the coarse mesh were biased such that, along a radius extending from
the crack tip, the elements were equally spaced on a logarithmic scale from
10- 9 R to 10- 6R. Nodal displacements were constrained along each ring to
enforce compatibility. Surrounding the coarse mesh was the refined mesh,
composed of thirty-six rings, each containing twenty-four elements. As
in the coarse mesh region, the element radii increased with distance from
the crack tip with reference to a logarithmic scale. Six rings of elements,
equally spaced on a logarithmic scale, were contained within a decade unit
of crack length, 10-m+'R to 10-mR, where m ranges from 5 to 0. The
refined mesh extended from 10- 6 R to R. The entire mesh contained 2850
nodes, each possessing two kinematic degrees of freedom, and an additional
pressure degree of freedom at each corner node. The coarse mesh was con-
structed from 45 elements while the refined mesh had 864 elements, so that
there was a total of 909 elements.

The finite element analysis was performed using ABAQUS [15] on an
Alliant FX-8 computer. The J-integral was calculated using the domain
integral method [16].

The finite element solution was obtained by applying consistent nodal
point forces, obtained through the integration of the linear elastic stress
field, equation (5), along the outer radius R of the finite element mesh.
At sufficiently small values of KI, the linear elastic asymptotic crack tip
field was accurately found throughout the mesh. The numerically calcu-
lated value of the J-integral was within one per cent of the applied value,
equation (8), where the error in the J-integral was determined from

Jnumerical - dapplied% error =aple (10)
"Japplied

As the magnitude of KI increased, the nonlinear asymptotic solution began
to evolve at the crack tip and grow in size and intensity.

4 Results
Before applying the cavitation surface, equation (1), to the finite results,

it was necessary to verify the accuracy of the finite element solution by
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checking the assumptions of small-scale nonlinearity and by comparing
the finite element results to the theoretical asymptotic solution. Under
small-scale nonlinearity, the J-integral must be path-independent and must
equal the energy release rate, equation (8). Previously [13], it had been
shown that, when the calculated value of the path independent J-integral
is within five per cent of its applied value, equation (10), the numerical
solution is independent of the boundary condition type. That is, the finite
element results are the same whether the boundary conditions are applied
as displacements or as consistent nodal point forces.

In this computational analysis, the J-integral was within one per cent
of its mean value along all contours from r = 10-6R to 3.0x10- 6 R, the
largest radius at which the J-integral was evaluated, demonstrating that
path independence was maintained. In addition, the calculated value of the
J-integral was within two per cent of its applied value for all load levels.
Thus, the small-scale nonlinearity condition was met.

Before examining the crack tip field quantities, it was necessary to iden-
tify and locate the region of nonlinearity surrounding the crack tip. The
region of geometric nonlinearity can be arbitrarily defined in terms of the
deformation gradient, where

Fi 1i = ,i~i + - and u-' j1< 0.1. (11)

Inside the region of nonlinearity, the nonlinear asymptotic solution should
be present, while ouside of this region, the linear elastic asymptotic field
should dominate. The region of nonlinearity in the finite element mesh
extended outside the first decade of elements in the refined mesh region to
a radial distance of 0.11 Japplied/Y in the undeformed configuration.

There are three load amplitude constants associated with the nonlinear
asymptotic solution: a, b and d. From the deformation fields yi, equa-
tion (6), the accuracy of the deformation field can be examined and the
load amplitude constants b and d can be determined. Along 0 = 0, the
deformation field Yi , minus a rigid body displacement, becomes

Yl = 4/3ar3/2 . (12)

In the nonlinear crack tip region, for the first decade of elements in the
refined mesh region, yi can be predicted from equations (9) and (12) along
0 = 0. The deformation field obtained from the finite element analysis
agreed within four per cent to the predicted value at all load levels. The
load amplitude constant b was found directly from Yl, where, as r -- 0 in
the refined mesh region,

b -, -1.6, (13)
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when Japplied = 0.065 MPa-m. Similarly, now that a value for b has been
determined, the load amplitude constant d in the Y2 deformation field can
be evaluated and, as r --+ 0 in the refined mesh region,

d - 1.1-A (14)
K1 '

A comparison of the stress field determined by the finite element analysis
demonstrates good agreement with the theoretical asymptotic solutions,
equations (5) and (6), refer to Figures (3) - (5) which show the in-plane
stress field evaluated along 0 = 71.25 degrees. Far from the crack tip, the
linear asymptotic solution can be found for all three in-plane stresses; how-
ever, as r --* 0, these in-plane stresses transition to the nonlinear asymp-
totic crack tip stress field. In Figure (3), the change in the order of the
singularity for r22, from 1/1/' to 1/r is readily apparent as r --- 0. The
order of the singularity for both the linear and the nonlinear asymptotic
solution is the same, 1/V/iF, for r12, but the angular function differs, as
shown in Figure (4). Figure (5) demonstrates how rlj transitions to its
nonlinear asymptotic value which is independent of r and is constant for
0 = constant. The components T22 and T1 2 possess the closest agreement
with the nonlinear asymptotic field, and it is noted that r 22 > 12 >» T11 .
In this analysis, the largest stress quantities appear to approximated more
accurately.

Having verified the accuracy of the finite element mechanical crack tip
stress fields, the cavitation criterion in equation (1) can now be applied to
the computational results. The cavitation surface surrounding the crack tip
in the deformed configuration is shown in Figure (6). The cavitation surface
closely follows the crack face up to a height of 0.24 Japplied/y. This surface
indicates that the locus of extensive void growth should extend in the
nonlinear elastic region, no further than approximately 0.015 Japplied//P
in front of the deformed crack tip.

5 Discussion and Conclusions

The relationship between a Mode I plane strain crack in a NeoHookean
material under the assumptions of small-scale nonlinearity and a local cavi-
ation criterion [4] was examined using finite element analysis. The com-
putational results demonstrate that the region of nonlinearity, where the
nonlinear asymptotic crack tip solution can be found, is small under the
assumptions of small-scale nonlinearity, extending to 0.11 Japplied//' in
the undeformed coordinate system. However, within this region, the finite
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element results compare favorably with the theoretical asymptotic solu-
tion for this problem, and all load amplitude parameters in the theoretical
solution were determined either analytically or numerically. Outside of
the nonlinear region, the linear elastic asymptotic solution was accurately
found.

A local cavitation surface was then identified in the nonlinear crack tip
region, and predicted that cavitation could occur ahead of the crack tip,
up to approximately 0.015 Japplied/a in the deformed configuration.
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Figure 1: Undeformed(a) and deformed(b) coordinate systems in a stationary
crack.
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Figure 2: Finite element model. The mesh in (a) is enclosed by the mesh in (b).
Similarly, the mesh in (b) is enclosed by the mesh in (c).
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Figure 6: A local cavitation surface surrounding the crack tip in the deformed
configuration.
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ABSTRACT

Steady state axisymmetric deformations of a thick target being
penetrated by a fast moving rigid cylindrical rod have been analyzed. Two
different problems, namely, one in which the target material is modeled
as elastic perfectly plastic and the target/penetrator interface smooth, and
the other involving a viscoplastic target and rough target/penetrator
interface are studied. The frictional force at the contact surface is
assumed to depend upon the normal traction and the relative velocity of
sliding between the two surfaces. Computed results show that the
consideration of elastic effects reduces the hydrostatic pressure at the
target/penetrator interface and the consideration of frictional forces
affects minimally the distribution of normal tractions on the
target/penetrator interface.

INTRODUCTION

An outstanding problem in penetration mechanics is to find, within
reasonable resources, whether or not for the given penetrator and target
geometries, materials, target support conditions, penetrator speed, and the
angle of attack, the target will be perforated. If the target is perforated,
the speed of the penetrator when it ejects out of the target is of interest.
If the target is not perforated, one would like to know the shape and size
of the hole made in the target. This problem has defied a complete
solution for many years. We refer the reader to review articles by
Backman and Goldsmith [1], Wright and Frank [2], Wright [3], and
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Anderson and Bodner [4] for a review and discussion of most of the work
done on ballistic penetration. Different engineering models have been
proposed by Awerbuch [5], Awerbuch and Bodner [6], Ravid and Bodner
[7], Ravid et aL [8], Forrestal et al. [9], and Batra and Chen [10]. For
impact velocities in the range of 0.5 km/s to 10 km/s, Birkhoff et al. [11],
Pack and Evans [12], Allen and Rogers [13], Alekseevskii [14], and Tate
[15] have proposed using the Bernoulli equation or its modification to
analyze the penetration process. The last three references introduced a
resistive pressure, dependent upon the material strength, in the Bernoulli
equation. Tate [16,17], Pidsley [18], Batra and Gobinath [19], Batra and
Chen [10], and Jayachandran and Batra [20] have estimated the value of
the resistive pressure. Whereas Tate used a solenoid fluid flow model of
the steady state penetration process, other investigations used a numerical
solution of the problem. Both Pidsley [18] and Wright [3] have pointed
out that the transverse gradients of the shear stress evaluated on the axial
line make noticeable contributions to the resistive pressure terms in the
modified Bernoulli equation.

For a rigid/perfectly plastic target, it is very likely that the
hydrostatic pressure at target points adjoining the penetrator/target
interface is increased due to the rigidity of the surrounding target material.
Also, the assumption used heretofore by Batra and co-workers [20-27] that
the target/penetrator interface is smooth is not very realistic. The
distribution of the frictional force on this surface is not known a prori.
Chen and Batra [28] have recently proposed that the frictional force at a
point on this interface be assumed to be a function of the normal traction
and the relative velocity there between the adjoining target and penetrator
particles. Jayachandran and Batra [20] have studied the effect of the
elasticity of the target material on its deformations. We summarize below
some of the results from these two investigations.

FORMULATION OF THE PROBLEM

With respect to a cylindrical coordinate system with origin at the
center of the penetrator nose and positive z-axis pointing into the target,
equations governing the target deformations are:

Balance of mass: div v = 0, (1)

Balance of linear momentum: div a = p (v • grad) v, (2)
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Constitutive relations: a = - pl + s, (3)

0
s = 2G (D- DP), (4)

s = 2V± (I) DP, (5)

where

2p- 0-(1 + M)`,

(6)
212 = tr (Dp

2 ),

0
s = (v • grad) s + s W- W s, (7)

2D = grad v + (grad v)T, 2 W = grad v - (grad v)T. (8)

Equations (1) and (2) are written in the Eulerian description of motion.
The operators grad and div denote the gradient and divergence operators
on fields defined in the present configuration. In equations (1) - (8), v is

the velocity of a target particle relative to the penetrator, a the Cauchy

stress tensor, s its deviatoric part, p the hydrostatic pressure not deter-

mined by the deformation history, and an open circle on s indicates the

Jaumann derivative defined by eqn. (7) for the steady stress field.
Furthermore, G is the shear modulus, DP the plastic strain-rate, V defined

by eqn. (6), may be interpreted as the shear viscosity of the target

material, o0 is the yield stress in a quasistatic simple compression test, D

the strain-rate tensor, W is the spin tensor, and parameters b and m char-

acterize the strain-rate sensitivity of the material. Equation (4) expresses
Hooke's law written in the rate form, and is based on the tacit assumption
that the strain-rate has additive decomposition into elastic and plastic
parts. In eqns. (3) - (5) we have assumed that a material particle is
undergoing elastic and plastic deformations simultaneously. Substitution
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from eqns. (5) and (7) into eqn. (4) gives the following differential

equation for s.

(v -grad) s + s W- W s + (G/p. s = 2G D. (9)

On the target/penetrator interface, we impose

t" (a n) = - v (v/v 0)O n '(o n) (v/v), (10)

v n = 0, (11)

where v = v I = (vr2 + Vz2 )1/2, n and t are, respectively, a unit normal and

a unit tangent vector to the surface, and P• and v are constants. Thus, the
frictional force at the contact surface is assumed to depend upon the
relative speed between the penetrator and the target. Prior to discussing
boundary conditions on other surfaces, we note that the governing
equations are highly nonlinear, and we intend to seek their approximate
solution by the finite element method, which necessitates that we consider
a finite region. The bounded region R of the target whose deformations
are analyzed is depicted in Figure 1, which also shows the discretization
of the domain into finite elements. The boundary conditions imposed on
the bounding surfaces of this finite region are:

vr= 0, vz = -1.0 on the bounding surface EFA, (12)
a = 0, vr = 0 on the axis of symmetry DE, (13)
azz =0, vr = 0 on the surface AB. (14)

Conditions (13) follow from the assumed axisymmetric nature of deforma-
tions. We note that eqn. (9) can not be solved for s, but is to be solved

simultaneously with eqns. (1) and (2). Accordingly, we need to specify the
state of stress of the material entering the region R [29]. We set

p=0, s,=0, so 0=, and sr2 =0
on the bounding surface EFA. (15)
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Figure 1. The finite region studied and its
discretization
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COMPUTATIONAL CONSIDERATIONS

An approximate solution of the aforestated problem has been
obtained by the finite element method. The region R is divided into
quadrilateral elements, and within each element v and s are approximated

by bilinear functions defined in terms of their values at the corner nodes
and the pressure p is assumed to be constant. Thus, v and s are continu-

ous across interelement boundaries, but p is discontinuous. The pressure
field is smoothened by using

ME (fN, Nj dlý pj =- f N, plV, -- 1, 2,...M (16)

where M equals the number of nodes, p is the discontinuous pressure
field computed above, and N1 and N2, ... are the piecewise bilinear finite
element basis functions. We used the Petrov-Galerkin [30] formulation of
eqn. (9), but the Galerkin [30] formulation of eqns. (1) and (2). The
iterative process used to solve the resulting nonlinear algebraic equations
was stopped when

(Y I14m - -m-4l2)1/2 < 0.01 (E jjkmli-1 2)1/2  (17)

where 11,112 = 2 + •z 2 when • is a vector, 11ý112 = tr (ý •T) when is a

second order tensor and IId II = for a scalar 4. The summation sign

in eqn. (17) implies the sum of the indicated quantity evaluated at all
nodes, and the convergence criterion (17) is applied to the fields of the
velocity, the deviatoric stress tensor, and the pressure.

RESULTS AND DISCUSSIONS

In order to investigate the effect of material elasticity, we set b =

0.0 in eqn. (6)1 and v = 0.0 in eqn. (10). Thus, the target/penetrator
interface is now taken to be smooth, and the target material to be
elastic/perfectly plastic. The distribution of the non-dimensional normal
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tractions, normalized with respect to the yield stress a0 in a quasistatic
simple compression test, on the nose surface of a hemispherical nosed
penetrator for a = p v0

2/ 00 = 10, and y = a/G = 10-2, 10, 10"', and 10-O
is shown in Figure 2. Note that y = 0 for a rigid/perfectly plastic
material. The curves for y = 10-5 and 10-8 overlap each other. These
plots reveal that the consideration of elastic effects reduces the normal
traction on the penetrator nose surface. This reduction is due to the lower
value of the hydrostatic pressure for the elastic/plastic problem as
compared to that when the target material is modeled as rigid/perfectly
plastic.

12I
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Figure 2. Distribution of the compressive normal stress
divided by 00 on the penetrator nose surface for
different values of y = oo/G when the target mat-
erial is modeled as elastic perfectly plastic.
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The least squares fit to the computed values of the maximum
hydrostatic pressure Pmax and the axial resisting force F experienced by the
penetrator for different values of a gives

Pmax = 7.20 + 0.48 a, F = 7.67 + 0.042 a

for a rigid/perfectly plastic target, and

Pmax = 5.29 + 0.47 a, F = 5.90 + 0.038 a

when the target material is modeled as elastic perfectly plastic. It is clear
that F depends upon a very weakly. The corresponding values for the
target resistance parameter R, appearing in the modified Bernoulli
equation are

Rt = 7.86 - 0.0186 a, for a rigid/perfectly plastic target,
Rt = 5.96 - 0.027 a, for an elastic/perfectly plastic target.

We note that pma and Rt are scaled by a0, and F by 7r r02 00. The value
of Rt computed from Tate's formula [17] is 5.734 which matches well with
our value for an elastic/plastic target.

Figure 3 depicts the contours of the nondimensional hydrostatic
pressure (i.e., p/oo) in the deforming target region for a = 10. These
show that the pressure drops off to zero along any radial line, the rate of
drop being high near the nose surface and quite low as one moves away
from the target/penetrator interface. The contour of the zero hydrostatic
pressure near the bounding surface is not plotted.

We refer the reader to [20] for a detailed discussion of results for
other nose shapes and some other results for the hemispherical nosed
penetrator.

When studying the effect of frictional forces at the contact surface,
we disregard elastic deformations, and accordingly omit eqns. (4) and (9).
Equation (1) and that obtained by substituting from (5) and (3) into (2)
together with boundary conditions (10) - (14) are solved for v and p. The

distribution of the non-dimensional normal tractions on the nose surface
of a hemispherical nosed penetrator for a = 6.15, P = 1.5, b = 106 sec,
m = 0.09, and the coefficient of friction u = 0, 0.1, 0.2, 0.3, and 0.4 is
plotted in Figure 4. These plots vividly demonstrate that the coefficient
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Figure 3. Contours of the hydrostatic pressure divided by a0
in the deforming target region.

of friction affects little the normal traction on the penetrator nose surface.
However, the distributions of the tangential speed and the second
invariant I of the strain-rate tensor on the target/penetrator interface are
quite different for different values of u. These results and the motivation
for the expression (10) for the frictional force are given in Ref. [28].
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EXPERIMENTAL INVESTIGATION OF RHA PLATE
PERFORATION BY A SHAPED-CHARGE JET

Martin N. Raftenberg

U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005

Abstract
In each of a series of experiments, a shaped charge warhead is fired into an RHA
plate. The parameters varied are target plate thickness and standoff. Data are
presented for pre-impact jet geometry, behind-armor-debris patterns, perforation
hole throat radius, ejecta ring radius, spall ring radius and total mass lost by the
target plate.

1. INTRODUCTION

A series of ten experiments is performed in each of which a shaped charge
warhead is fired at normal incidence into a plate of rolled homogeneous armor
(RHA). The experimental setup is sketched in Figure 1. The warhead contains a
conical OFHC copper liner with a vertex angle of 420 and a base diameter of 81.3
mm (- 1 charge diameter, or 1 C.D.) Three X-ray tubes are employed to
produce flash radiographs. The two parameters varied in the series are the
standoff S, or distance between charge base and the target plate, and target plate
thickness d. The values of d and S in each experiment are listed in Table 1.
Most combinations of d and S values are repeated to assess round-to-round
variability and to allow for six flash radiographs for a given set of values. Also
listed in Table 1 are the target plate's cross-sectional dimensions and a Brinell
hardness measurement for the entrance and exit surfaces.

Results to be presented in this paper include (i) flash radiographs, both of
the jet prior to impact and of the behind-armor-debris pattern at specific times
following perforation, (ii) measurements pertaining to the final geometry of the
target plate hole, and (iii) measurements of the total mass lost by the target plate.
The intention is to provide a set of benchmarks to modelers and thereby lead to a
deeper understanding of phenomena associated with RHA plate perforation by a
shaped-charge jet.

2. DISCUSSION

2.1. The Pre-Impact Jet

Figure 2 shows a radiograph at 5 gts before impact from a test involving the
short standoff of 3.00 C.D. The stretching jet is still intact. The diameter of the
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jet's wide tip region is 7.8 mm, while the "stalk" behind this region has a fairly
uniform diameter of about 4.0 mm. The jet tip speed is known from previous
experience with this warhead to be 7.7 mm/gs.

Figure 3 shows a radiograph at 4 gs before impact from a test involving a
12.00 C.D. standoff. By now the jet has broken up into particles. The leading
particle has a foremost "bulb" with a 6.2 mm diameter, followed by a "stalk" with
a 4.8 mm diameter. The total length of this leading particle is 26 mm. It is
therefore expected on the basis of hydrodynamic theory [1] to be able to
perforate a 13- or a 25-mm-thick target plate without assistance from subsequent
particles. The speed of this leading particle is known from a previous experiment
to be 7.7 mm/gs [2].

2.2 Post-Perforation Radiographs of Behind-Armor-Debris

Each of Figures 4 through 7 shows a series of six radiographs for the
respective cases of d = 13 mm and S = 3.00 C.D., d = 25 mm and S = 3.00
C.D., d = 51 mm and S = 3.00 C.D., and d = 13 mm and S = 12.00 C.D. The
six views apply at the approximate times of 5 gs before impact and 15, 30, 70,
140 and 210 gs after perforation. (These times are computed from times after
initial impact given in the figures based on an assumed penetration speed of 4.0
mm/gs.) The views at 5 gs before impact and at 70 gs after perforation have a
magnification factor of 0.8 times that of the others. The first experiment listed
pertains to the three earliest views, and the second to the three latest.

RHA fragments in the radiographs are called "ejecta" if located between the
plate's entrance surface and the original warhead location and "debris" if
positioned on the opposite side of the exit surface as was the original warhead.
At 15 gs after perforation, Figures 4 through 7 each shows a debris cloud
composed of small fragments, presumably created by reflection of the initial
shock. The foremost fragments of this cloud are at about the same elevation as
the jet tip (Figures 4, 5 and 6) or the tip of the leading jet particle (Figure 7).

In each of Figures 4 through 7, the largest visible debris fragments become
larger as time increases. New fragments appear to be forming long after
perforation is complete. In Figure 6, which corresponds to the case of d = 51
mm and S = 3.00 C.D., highly-deformed exit surface material seems to separate
from the plate between 70 and 140 gs. This separation forms the "spall ring", to
be discussed in Section 2.3. At S = 3.00 C.D., as d is successively increased
from 13 to 25 to 51 mm, the size of the largest late-time debris fragments
increases. The largest late-time debris fragments in the 12.00 C.D. case of Figure
7 are smaller than those in Figure 6, and perhaps intermediate between those in
Figures 4 and 5.

The largest late-time ejecta fragments are larger than the largest debris
fragments in Figures 4 and 7, which both pertain to 13-mm-thick plates. No
late-time ejecta fragments are visible in Figures 5 and 6 due to restricted field of
view.
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2.3. Target Plate's Final Hole Geometry

An axisymmetric idealization of the final hole geometry for a given test is
sketched in Figure 8. The hole's "throat" is its most narrow cross-section,
corresponding to a particular elevation. The "ejecta ring" is the interface between
entrance surface material that has remained on the plate and that that has
separated to form (presumably mostly ejecta) fragments. Similarly, the "spall
ring" is the interface between exit surface material that has remained on the plate
and that that has separated to form debris fragments.

Following each shot, an entrance and an exit view photograph of the
perforated target plate are obtained. As an example, an exit view of the 51 mm
plate is presented in Figure 9. The roughly circular interfaces identified with the
throat and the spall ring are indicated. These interfaces are digitized. The
entrance view yields a second digitization of the hole throat and one of the ejecta
ring. Numerical integrations of these digitized coordinates produce two results
for throat area At for each plate and one for each of ejecta ring area Aer and spall
ring area Asr. Throat, ejecta ring, and spall ring radii, ri, rer, and rsr,
respectively, are defined by

r,= 1 A , rer = , rsr = (1)

The results for r, are plotted as a function of plate thickness d with standoff
S a parameter in Figure 10. At S = 3.00 C.D., r, shows little change as d is
increased from 13 to 25 mm, then decreases substantially as d is further increased
to 51 mm. At S = 12.00 C.D., rt decreases as d is increased from 13 to 25 mm.
At both d = 13 mm and d = 25 mm, rt increases as S is increased from 3.00 C.D.
to 12.00 C.D. This last result may be due to enlargement by subsequent particles
of the hole created by the leading jet particle at S = 12.00 C.D. A least-squares-
error fit of rt data as a function of d and S is

r(d, S) = [14.16 mm - 0.02043d - (0.001022 mm - 1)d2] (1 + 0.01435S) (2)

In this and in all equations that follow, d is measured in millimeters and S in
charge diameters. Equation (2) evaluated at S = 3.00 C.D. and at S = 12.00
C.D. are included in Figure 10.

rer data are plotted as a function of d with S a parameter in Figure 11. At S
= 3.00 C.D., rer decreases as d is increased from 13 to 25 mm, then increases as
d is further increased to 51 mm. At S = 12.00 C.D., rer decreases as d is
increased from 13 to 25 mm. At both d = 13 mm and d = 25 mm, rer seems to
increase as S is increased from 3.00 C.D. to 12.00 C.D. ( This last statement has
been worded cautiously because of the overlap at d = 13 mm.) A least-squares-
error fit to the data in Figure 11 is

rer(d,S) = [24.28 mm - 0.3065d - (0.004578 mm - 1)d2] (1 + 0.006286S) (3)
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Equation (3) is shown evaluated at S = 3.00 C.D. and at S = 12.00 C.D. in
Figure 11.

Finally, r5, data are plotted as a function of d with S a parameter in Figure
12. At S = 3.00 C.D., r5, increases as d is increased from 13 mm to 25 mm and
from 25 mm to 51 mm. rs, shows wide scatter at d = 51 mm, S = 3.00 C.D. At
S = 12.00 C.D., r5, increases as d is increased from 13 to 25 mm. r,, shows a
weak dependence on S at both d = 13 mm and at d = 25 mm. r5, will therefore
be represented as a function of d only. A quadratic least-squares-error fit is

rsr(d) = 14.25 mm + 0.7051d - (0.005724 mm - 1)d 2  (4)

Equation (4) is included in Figure 12.

2.4. Total Mass Lost By Target Plates

Each RHA plate is weighed before and after the experiment to determine
its total mass loss, AM. Results for AM are plotted in Figure 13 as a function of
d with S a parameter. Only eight data points are included, since AM was not
measured to sufficient accuracy in Rds. 4142 and 4189. This is because the four
hooks welded onto each plate to enable its support separated from the plates in
these two rounds.

Figure 13 shows that at S = 3.00 C.D., AM increases as d is increased from
13 to 25 mm and from 25 to 51 mm. Less scatter is evident at d = 51 mm, S =
3.00 C.D. in Figure 13 than in Figure 12 because no AM measurement is obtained
for Rd. 4142. At S = 12.00 C.D., AM increases as d is increased from 13 to 25
mm. At both d = 13 mm and at d = 25 mm, AM shows little dependence on S,
so AM is represented by a function of d only. A quadratic least-squares-error fit
is

AM(d) = 108.7 gm - (0.5852gm mm - 1)d + (0.1323 gm mm - 2)d 2  (5)

which is plotted in Figure 13.
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Table 1. Experiment Descriptions

Rd. d BHN ent. BHN exit X-sect. S
(mm) (mm2) (C.D.)

4099 12.5 364 340 251x252 3.00
4186 12.5 340 340 251x254 3.00
4098 25.5 364 364 254x256 3.00
4187 25.1 364 364 252x253 3.00
4097 51.1 321 321 250x255 3.00
4142 51.4 332 302 255x255 3.00
4188 51.3 302 321 255x256 3.00
4190 12.8 340 364 253x253 12.00
4189 12.6 340 364 250x254 12.00
4100 25.6 364 340 251x252 12.00

EXPLOSIVE

SHAPED CHARGE CONICAL OFHC COPPER LINER

I 1 '

STANDOFF S

CHARGE DIA. 8 1.3mmm1 C.D.I

X-RAY TUBES RHA TARGET PLATE TARGET PLATE

THICKNESS d
X-RAY FILM

Figure 1. Experimental Setup.
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Tip speed

=7.7 mnm/ts ......

Figure 2. Radiograph at 5 gs Before Impact for Rd. 4097,
for Which S = 3.00 C.D.

S4.8 mm dia.

i • 6.2 mnm dia.
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speed = 7.7 mnm/gs

Figure 3. Radiograph at 4 gs Before Impact for Rd. 4100,
for Which S = 12.00 C.D.
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Penetration Analysis of HY100 Steel Plate

E. P. Chen
Sandia National Laboratories

Albuquerque, New Mexico 87185

Introduction

This investigation deals with the analysis of penetration processes in
HY100 steel plates. The study is limited to 1.05-cm-thick and 30.48-cm-
diameter HY100 steel plates being impacted by 3-cm-diameter and 28.15-
cm-long maraging steel rods (T-250) at 100 to 400 m/s impact velocities.
The impact conditions correspond to a series of experiments reported in
Reference [1]. The analysis is numerical in nature. The transient dynamic
finite element code PRONTO 2D [2] is used to perform the numerical

simulations.

Experimental evidence [1] suggests that under the above impact con-
ditions, little or no damage is inflicted on the maraging steel rods while the
targets fail by shear induced plugging. Based on these observations and
limited material test data [3], the rod is modeled as an elastic/perfectly
plastic solid while the target is approximated as an elastic/plastic hard-
ening material. A maximum equivalent plastic strain criterion is used to
govern the progressive failure process in the target plate. The element
death option in PRONTO 2D is used to simulate the plug formation by
removing failed elements. A special dissipative viscous pressure was intro-
duced in [2] to allow energy to be dissipated as new surfaces are formed by
deletion of failed elements. Complete details of the calculation procedure
are presented. Comparisons between calculated and measured data are
made. Good agreement is observed.
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Figure 1. Schematic view of test condition.

Finite Element Analysis

A schematic view of the experiment is shown in Figure 1 where a
cylindrical rod is impacting normally onto a circular plate. The rod is
made of maraging steel (T-250) with length L = 28.15 cm and diameter D

= 3.0 cm. The circular target plate is made of HY100 steel with diameter
d = 30.48 cm and thickness h = 1.05 cm. The edge of the target plate
is clamped, and the impact velocity varies approximately from 100 to 400

rn/s.

Figure 2 shows the finite element model of the experimental geometry.
Due to axisymmetry, only half of the actual geometry needs to be included.
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Figure 3. Expanded view of the mesh near the interface.

The mesh in Figure 2 has 4000 quadrilateral elements and 4242 nodes. The

edge of the target plate is fixed. The rod and the plate are in contact at

time t = 0 with the rod approaching the plate at the impact velocity. The

contact surfaces at the interface between the rod and the target are taken

to be slideline pairs to transfer momentum from the impacting rod to the

target. An expanded view of the mesh near the interface between the rod

and the plate is shown in Figure 3 to show relative element sizes in the rod

and in the plate.

Limited material property measurements on both maraging and HY100

steel were obtained [3] which exhibited elastic/plastic behavior for both

materials. Moreover, observations from the present series of experiments
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[1] indicated a ductile response for both steels. As a first order approxi-
mation, the penetrator is modeled as an elastic/perfectly plastic material
while the target behaves as an elastic/plastic hardening solid. For marag-
ing steel (T-250), the material properties can be taken from [3] as: mass
density p = 8000.0 kg/rn3, Young's modulus E = 206.9 GPa, Poisson's
ratio v = 0.3, and yield stress ay = 1.724 Gpa. For HY100 steel, the
material properties are taken from [3] as: mass density p = 7830.0 kg/M 3,
Young's modulus E = 206.9 GPa, Poisson's ratio v = 0.3, yield stress Ory
= 1.034 Gpa and tangent modulus Et = 2.069 GPa. Experimental evi-
dence [1] shows that except in areas near the interface, the rod sustains

little or no damage and the plate fails by shear induced plug formation.
Because failure did not occur in the rod, no failure criterion is required in
its numerical treatment. For the target plate, failure is assumed when the
maximum equivalent plastic strain exceeds 15%. This corresponds to the
strain level measured in uniaxial tension tests. The progressive plugging
sequence is numerically modeled as follows. Failure initiation occurs at
element locations which have reached 15% equivalent plastic strain. These
elements are then deleted from the mesh to simulate material fracturing.
As the rod penetrates into the target, more elements fail and are deleted.
This. process is repeated until a block of target material under the rod
is completely separated from the rest of the plate to form a plug. The
rigid-body velocity of the rod decreases initially due to target resistance
until the plug is formed. At this time, the rod penetrates and exits the
target at a constant residue velocity since the target can no longer offer
any resistance. At the same time, the plug is also ejected from the target

plate. The calculated residue velocity of the penetrator and the ejection
velocity of the plug will be compared to the measured data to validate the
numerical procedure.

Presentation of Results

Nineteen different impact velocities have been included in the numer-
ical computations. These velocities are: 78, 93, 94, 95, 100, 110, 120, 127,
140, 150, 162, 180, 200, 230, 258, 300, 350, 370, and 400 m/s. For the
first two velocities, the rod does not perforate the target plate. Perforation
of the target plate occurs for all the remaining impact velocities. Figures
4-5 show the penetration process at 78 m/s rod velocity in terms of the
equivalent plastic strain contour plots. The maximum equivalent plastic
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Figure 5. Equivalent plastic strain contour plot for 78 m/s impact

velocity. (a) 0.6 ms, and (b) 0.8 ms after impact.

417



strain reaches only 14.45%, and consequently, no plugging occurs. At 0.8
ms, the numerical solution predicts rebounding of the penetrator as shown
in Figure 5. This has also been observed in the experiment. For impact
velocities of 93 m/s, similar behavior to that of Figures 4-5 is predicted.

For higher impact velocities, plate perforation occurs. As an illustra-
tion, Figures 6-7 show the penetration process in terms of the deformed
mesh at 127 m/s impact velocity. The plugging sequence is clearly demon-
strated. Failure initiates from the bottom of the plate at 70 Its after impact.
Failure progresses until complete separation of the plug from the plate oc-
curs at about 110 lis. At 180 p.s, Figure 7, the penetrator has just about
cleared the plate and the plug has been ejected. Figure 8 shows the axial
velocity history of the penetrator for 127 m/s impact velocity. It is seen
that at about 110 Is after impact, when the plug has separated completely
from the plate (Figure 7), the axial velocity of the penetrator attained a
constant magnitude for the rest of the penetration event. This constant
velocity is interpreted to be the residue velocity of the penetrator. Similar
penetration processes are predicted for all other impact velocities equal or
higher than 94 m/s. Comparison between calculated and measured residue
velocities are shown in Figure 9. The residue velocities are taken to be zero
when plate perforation did not take place. The dotted line in Figure 9 pro-
vides a reference indicating equal impact and residue velocities. For the
range of impact velocities studied, excellent agreement is observed. Finally,
Figure 10 compares the calculated and measured plug velocities for impact
velocities equal to 127, 258, 162, and 370 m/s. The calculated results in-
clude velocity histories while measured data from [11 provide only one value
for each impact velocity. The calculated results show that at later times,
the plug velocity oscillates about a constant value. By interpreting these
constant values to be the long term steady-state velocities of the plug and
comparable to the measured data, good agreements are again obtained.

Summary

Numerical analysis of a series of penetration experiments in which
maraging steel rods impact HY100 steel plates at various impact velocities
is presented. Using a maximum equivalent plastic strain criterion for the
HY100 steel and the element deletion capability in the PRONTO 2D code,
the analysis simulates successfully the observed plugging failure sequence in
the target plate. Quantitatively, moreover, calculated penetrator residue
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Axial Velocity History Plot
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Figure 8. Penetrator axial velocity history at 127 m/s impact velocity.
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IMPACT VELOCITY VS RESIDUAL VELOCITY PLOT
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Plug Velocity History Plot
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Figure 10. Plug velocity history plot and comparison with measured
data.
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velocities and plug velocities are in excellent agreement with measured
data.
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Introduction

The determination of the contact forces at impact between a de-
formable projectile and a hard target is required for the design of energy
absorbing features which limit the shock loads experienced by critical on-
board components carried by the projectile. In this paper we present both
analytical and experimental methods to obtain the force-displacement his-
tory of the impact event. The immediate application of these methods is
toward the design of energy absorbing noses for laydown bombs. Upon
impact, the desired performance of the deformable nose is to absorb the
kinetic energy of the laydown bomb and smoothly decelerate the motion
to near-zero velocity. This attenuates the shock loads to internal electronic
components which must function after the impact event. The example we
have chosen is the axial impact of a 670 lb projectile, travelling at a veloc-
ity of 125 ft/sec, onto a hard concrete target. In general, this technology
falls within the area of crash worthiness, and thus has further application

to transportation vehicles and shipping containers.

*This work was performed at Sandia National Laboratories and was supported by the

U. S. Department of Energy under contract number DE-AC04-76DP00789.
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Analytical Method

The analytical approach to the impact problem of a deformable pro-
jectile consists of using finite element methods. PRONTO2D [1] is a finite
element code for large deformations of nonlinear materials subjected to
high strain rates. It contains algorithms for sliding material interfaces and

rigid boundaries, which are required for this type of contact problem.

The projectile test unit is 100 in long, has a 13.3 in diameter, and
weighs approximately 670 lbs. The computational model is shown in Figure
1. The forward section is composed of the energy absorbing nose, while the
aft section contains two cylindrical blivets which model the overall mass
properties of the test unit. A detailed model of the nose geometry is shown
in Figure 2. Of importance is the geometric step which is introduced in the

nose shell at approximately the midlength. This rolling plastic hinge causes
the shell aft of the step to roll inward during axial impact. By varying the
shell thickness aft of the geometric step, the strain energy of deformation
can be tailored to absorb the kinetic energy of the projectile. The use
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Figure 1. Projectile Model for Axial Impact Calculations (Units in
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Figure 2. Detailed Model of Energy Absorbing Nose (Units in Inches)

of rolling plastic hinges is an effective method to absorb large energies
in a small volume of material. The other geometric features internal to
the nose shell are required for mounting components contained within the
nose. The thin-walled section at the rear of the nose is required for oblique
impacts, and will not be discussed in this paper. However, this aft feature is
important to the axial impact problem in that energy is not being absorbed
during the collapse of this region.

The mesh for the axisymmetric geometry, not shown, is composed
of 1144 four-node quadrilateral elements and 1487 nodes. Four materials
are employed: 21-6-9 stainless steel for the nose, 7075 aluminum for the
forward flange region, and two fictitious materials for the aft cylindrical
sections. Mechanical property data for these materials are given in Table
1. The data for 21-6-9 SS were taken at a strain rate of 10-3 /sec [2]. The
implications of using material data at this strain rate are discussed later
in this paper.

The target is assumed to be unyielding, and the coefficient of friction
between the projectile and the target is assumed to be negligible. The
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Table 1. FE Model Material Properties

21-6-9 SS 7075 AL MAT 1 MAT 2
Material Model Elastic- Elastic Elastic Elastic

Plastic
Density, lbs/in3  0.283 0.100 1.13 0.205
Elastic Modulus, psi 29.0 x 106 10.0 x 106 30.0 x 106 30.0 x 106

Poisson's Ratio 0.33 0.30 0.30 0.30
Yield Stress, psi 54.0 X 103

Hardening Modulus, psi 240.0 x 10'

contact force is obtained by summing external forces, for each computa-
tional time step, on those nodes in contact with the target. The computed
deformed shapes of the nose for an impact velocity of 125 ft/sec are shown
in Figure 3 at selected times. The effectiveness of the rolling plastic hinge
is clearly evident. One can also observe the collapse of the aft thin-walled
section between 3.0 and 4.0 ms.

Experimental Method

The experimental method employs the Sum of Weighted Accelerations
Technique (SWAT) to construct the contact forces. This method was first
described by Gregory, et al., [3] and has successfully been applied to the
impact of large nuclear transportation casks [4]. A detailed report on the
use of SWAT methods for projectile impact is given by Bateman, et al.,
[5].

In general, the force is constructed from accelerometer measurements,

N

F = wia, (1)
i= 1

where ai are measured accelerations, wi are weighting factors, and the
products are summed over N measurements. The weighting factors are de-
termined a priori by imposing orthogonality between the rigid body modes
and the flexible modes of a structure with free boundary conditions. In
this manner the vibratory response of the structure is eliminated, with-
out having to filter the raw accelerometer data, and the single sum in (1)
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Figure 3. Computed Shapes of Energy Absorbing Nose
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yields the applied contact force. A detailed discussion of the relationships
between the weighting factors, the mode shapes, and the contact forces can
be found in [3,4,5].

Only the axial modes need to be considered for axial impact of the
projectile test unit. The first three modes of the cylindrical section aft of
the nose were determined by modal testing. These have frequencies of ap-
proximately 1800 Hz, 3500 Hz, and 4800 Hz. The weights for the SWAT
algorithm were computed using these three modes. Note that SWAT is a
linear method of force reconstruction. Therefore the nose, which undergoes
highly nonlinear deformations during the impact event, could not be at-
tached to the projectile test unit for evaluation of the modes. This means
that the forces constructed by the SWAT method are actually those that
are transmitted from the nose to the aft cylindrical section.

In order to measure the contribution of the three modes during the
impact event, individual accelerometers were mounted on the ends of the
cylindrical section and pairs of accelerometers were mounted on the sides
at approximately. the 1/4, 1/2, and 3/4 length positions. The data were
digitally filtered with a cutoff frequency of 4500 Hz and an attenuation
of 120 dB/octave. Pairs of accelerometer measurements at the same axial
positions were averaged to eliminate any bending response. The result-
ing five accelerometer signals were combined with the weighting factors to
determine the contact force.

The impact test was conducted at the Sandia Rail Launch Facility.
The projectile was mounted to a carriage on a horizontal I-beam and ac-
celerated to a velocity of 125 ft/sec using a solid rocket motor. The motor
and carriage were stopped and separated from the projectile at the end of
the I-beam. The projectile then traveled about 20 ft before impacting a
5 ft concrete cube backed by a packed earth berm. The instrumentation
was hard-wired to recording equipment in a nearby instrumentation trailer.

Results

A comparison of the computed and experimental deformed shapes of
the nose after impact is shown in Figure 4. The asymmetric deformation
of the experimental shape was caused by the projectile impacting the tar-
get slightly off the normal direction. This qualitative comparison shows
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Figure 4. Computed and Experimental Deformed Nose Shapes.

excellent agreement between calculation and experiment. Of particular
importance is the prediction of the extent of roll of the plastic hinge, and
the final radius of curvature. These are the quantities of interest for energy
absorber design.

A comparison of the computed and experimental contact forces is
shown in Figure 5. The computed forces are those transmitted from the
nose to the aft cylindrical section in order to be comparable with the ex-
perimental values. These forces are obtained by summing the product of
the finite element axial stresses multiplied by the corresponding areas at a
cross section just aft of the nose. They have also been low pass filtered with
a cutoff frequency of 4500 Hz. Note the excellent agreement between 4.0
and 5.0 in of displacement where the aft thin-walled section is collapsing.

During the initial deformation the peak value of the computed force
is slightly less than the experimental force. This can result from many
causes. The plastic behavior of 21-6-9 SS was modelled using a bi-linear
stress-strain curve, and perhaps a more realistic model (Johnson-Cook, for
example) would yield better agreement. In the experiment the concrete tar-
get was not rigid as assumed in the computations. And clearly a strain-rate
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Figure 5. Computed and Experimental Contact Forces.

dependent model of 21-6-9 SS would yield larger predicted forces. During
the late deformation the discrepancy between computed and experimental
forces is caused by components located in the nose of the test unit projec-
tile, but which were not. included in the computational model. Crushing
these components increases the stiffness of the nose structure, and thus in-
creases the contact force. Overall, the agreement is excellent for purposes
of characterizing the energy absorption behavior of this complex projectile
structure.

It is generally accepted that the yield strength of 21-6-9 stainless steel
increases with strain rate [6]. This is a necessary consideration at the higher
impact velocities. For the projectile geometry and velocity under consider-
ation in this paper, the peak strain rate is on the order of 10+2/sec. At this
rate the yield strength is about 84 ksi, compared to 54 ksi at 10- 3/sec.
Computations were conducted with a rate-dependent material model, and
yet only a modest increase in the peak contact forces were computed. This
is attributed to the fact that rate-dependent effects would most likely be
observed in the high frequency portion of the response, however this por-
tion has been filtered to under 4500 Hz. It is concluded that for higher
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frequencies of interest, and for much greater impact velocities, the rate-
dependent models would be required.
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ABSTRACT

Ceramic materials have become extremely important as integral compo-
nents of modern armor systems. The high compressive strength and low density
compare well with traditional metal armor. Previous analysis and modeling
techniques for penetrator/armor interactions have been based upon ideas from
metal plasticity. In recognizing that different physical phenomena occur in ce-
ramic based armor as compared with metals, the task of constructing suitable
material constitutive relations has begun. This paper reports the first step in
building a material model for use with armor ceramics. The ideas of metal plas-
ticity are extended to evaluate their suitablility for modeling ceramics. Normal
plate impact and instrumented ballistic experiments are modeled. The results
show that elastic-plastic models can predict the first stress pulse in a ballistic
event well.

INTRODUCTION

The nature of the impact geometry and rate is such that only limited details
can be directly measured such as impact velocity, residual velocity, crater ge-
ometry and limited free surface velocities. Other phenomena must be inferred
from more indirect observations (Shockey et al., 1990). The understanding of
ballistic events requires the contributions of the experimentalist, the material
scientist, the material modeller, and the hydrocode user.There needs to be inter-
action of the material scientist with the experimentalist to identify and under-
stand the physical phenomena, the material modeller with the material scientist
to build the physics into the constitutive relations, and the hydrocode user with
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the material modeler and experimentalist to iterate on the material model until
the experiments can be satisifactorily simulated.

The approach taken in this paper is to take uniaxial plate impact experi-
ments, apply simple elastic-plastic modeling ideas and apply to predictions of
complicated, projectile-plate impact experiments. The desire is to explore the
limits of applying elastic-plastic modeling in these senarios.

Experimental results for the high deformation rate, material behavior of ce-
ramics has been limited. The recent publication of a series of symmetric plate
impact tests by Sandia (Kipp and Grady, 1989) has provided the most complete
data base for dynamic behavior of armor ceramics. These tests apply to one cy-
cle of load-unload for shocking of the material and should be quite useful for
developing models of and obtaining fitting constants for the initial pulse level
and fracturing of the material. These experiments are less useful for later time
behavior of the fracture ceramic. These tests have recently been modeled by
Furlong et al. (1990) and also by Steinberg (1990) using damage and elastovis-
coplastic theories, respectively. Both of these models are able to give good
matching of the rear surface velocity profiles from the experiments. They do so
through the expense of many material parameters. These analyses are useful for
showing the ability to curve fit the experiemental profiles but not for demon-
strating predictive capabilities.

The suitability of using these one dimensional results for general ballistic
applications has yet to be established. Recent experimental results (Vincent and
Chang, 1990) seek to aid in addressing this problem. They have obtained re-
cordings of stress as a function of time at certain points along interfacial bound-
aries in ceramic targets during ballistic impact. Piezo-resistive pressure gauges
were placed at either one or two locations along the line of sight of the incoming
projectile at the interfaces of the different plates of the target system. These
stress history results were only obtained for the first 10 microseconds after im-
pact.

MATERIAL MODELING

The deformation behavior of ceramics in armor applications has been mod-
eled with concepts originally developed for metals. These have been available
in the computer codes since their inception. The earliest large scale numerical
modeling of ceramic armor was by Wilkins (Wilkins, 1968). His fracture model
caused an element to fail when the principal stress in the plane of motion ex-
ceeded a critical value. Certain limitations were put into place such that the
fracture had to initiate at a surface and could only move into an adjacent element
when sufficient time had elapsed for a running crack to have reached that loca-
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tion. The element (zone) was failed by relaxing the material strength to zero.
This brittle fracture model does reproduce certain observed phenomena includ-
ing the fracture conoid from a point nosed projectile impact.

Gordon Johnson and coworkers (Johnson and Stryk, 1990) have developed
a phenomenological ceramic model which includes more observed phenomena.
This model includes damage and fracture in both compression and tension. Af-
ter fracture a pressure increment is given to the element corresponding to dila-
tational effects and the flow strength becomes a function of pressure. This mod-
el has been incorporated into the EPIC code.

As mentioned above, R&D Associates (Furlong et al., 1990) have devel-
oped a model which introduces fracture via damage accumulation which can oc-
cur both in tension and compression. In tension, the material behaves elastically
but its bulk and shear moduli are degraded linearly by the accumulated damage.
The damage accumulates in tension as a function of strain rate and hydrostatic
tension (negative pressure). One implication of this model is that spall does not
occur if the hydrostatic stress is compressive no matter how large the maximum
principal stress. In compression, the ceramic behaves in an elastic-plastic man-
ner following a damage-degraded Johnson-Cook flow stress where damage ac-
cumulates as a function of plastic work.

Steinberg's recent ceramic model (Steinberg, 1990) falls into the class of
elastoviscoplastic models. It gives a very good match with experiments for
symmetric plate impact. The model has a temperature and pressure dependent
shear modulus and adds strain rate dependence to these variables for the flow
stress. The Cochran-Banner spall model is incorporated as the failure mecha-
nism (Cochran and Banner, 1977).

In the simulations reported in this paper, several variations of the elementa-
ry elastic-plastic theory originally developed for metals will be used. The ce-
ramics in the experiments that were modeled (A12 0 3 and SiC) are known to ex-

hibit Hugoniot behavior that resembles the results for elastic-plastic behavior of
metals (Kipp and Grady, 1989; Mashimo et al., 1987). The basic structure of
the model that was used includes three major components: the hydrostatic be-
havior, the flow stress behavior, and the fracture criterion.

The hydrostatic behavior was modeled using a polynomial equation of
state:

p = C 19+ C2j2 2 + C39 3 (1)

where p is the pressure (positive for compression), and Ix is given by
g = p/po - 1, where p is the density.

The initial yield stress of the ceramic is determined from the Hugoniot elas-
tic limit. For the simulations shown here the material was modeled as perfectly-
plastic prior to fracture (no strain hardening) although strain-rate dependence
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was allowed. After the material exceeded the fracture criterion the model al-
lowed for the flow stress behavior to be pressure dependent such as observed
by Arrowood (1987). The general form for the flow stress is shown in equation
2, where Fr is the normalized strain rate. The coefficients can be different be-
fore and after fracture.

Yy = ýyo (0 + c5 lnec) + c4p (2)

The fracture criterion that was used is among the very simplest. The mate-
rial was considered to have fractured when the maximum principal stress ex-
ceeded a critical value, acrit. When the material fractures, the flow stress is set

to the value given above and the pressure is not allowed to be negative. If the
pressure is negative it is set to zero. This model is very elementary, yet as will
be shown, reproduces a number of the important early-time stress and velocity
results.

SIMULATION OF SANDIA EXPERIMENTS

The Sandia experiments (Kipp and Grady, 1989) did not examine A12 0 3 , so

silicon carbide results for symmetric plate impact were simulated using the ma-
terial model described above. A 4 mm thick SiC tile was used to impact a target
consisting of an 8.9 mm thick SiC tile backed by a 25.4 mm thick lithium-flou-
ride window. The lithium-flouride window is placed on the back of the target
plate to provide a suitable window for the VISAR velocity interferometer. The
output from the experiment is a recording of the velocity of the interface be-
tween the SiC target plate and the backup window. The data is only available
for the first 2.5 microseconds after impact but this is long enough for the im-
pacting plate to send one loading wave followed by an unloading wave. The
experimental results show the two-wave loading profile reminiscent of elastic-
plastic waves in metals followed by the elastic-type unloading profile and sub-
sequent dispersion.

These tests were simulated using the DYNA2D finite element code
(Hallquist, 1987). The mesh and boundary conditions were configured to give
one-dimensional straining in the impact direction. The three plates (projectile,
target, window) were discretized by 160, 358 and 81 elements, respectively.
The projectile plate elements were given an initial velocity of 0.21 cm/micro-
second, corresponding to the experiment CE 5 (Kipp and Grady, 1989).

The first simulation was done using the simple elastic-plastic model with no
fracture. The comparison with experiment is shown in Figure 1.. Notice that
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the timing of the arrival of the loading and unloading waves is well predicted as
is the peak velocity. The shape of the loading and unloading profiles is not well
modeled. The elastic-perfectly plastic simulation gives a distinctive two wave
structure while the experimental result exhibits possible hardening and rate ef-
fects. The timing and peak levels, being in good agreement, indicate that the
equations of state give good results.

,15 -

0 Experiment
'• .0- -Simulation

- c4 =0, c5=O
o no fracture

>0

.50 1.0 1.5 2.0 2.5

Time (microseconds)

Figure 1, Elastic perfectly-plastic simulation of SiC
experiment CE5.

In White et al. (1991), the effect of adding the strain rate dependence and
fracture are systematically shown for modeling this experiment. Here we give
just the result showing the good correlation with experiment of the simple elas-
tic-plastic model (Figure 2). The largest difference with experiment occurs at
the top of the loading wave where the experiment shows a well defined plateau
of constant velocity. The simulation does not rise as quickly as the experiment
and display as sharp a comer. This is believed to be a result of neglecting strain
hardening of the ceramic and not of major consequence in ballistic applications.
Overall, we see that a very good match is obtained with a very simple model,
having only a few material constants. The constants used in the simulation
were: c 1=2.3 Mbar, c2=0., c3=0., c4 =0., c5=0.02, and ay,= 0.16 Mbar
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Figure 2, Simulation of SiC symmetric plate impact at 2.1 km/se

using strain rate dependence and fracture

Using these constants, a lower velocity experiment was simulated. Al-
though it is certainly from the same class as the one used to determine these
constants it provides a verification of some of the features of the model. The
experiment had the same geometry as the one considered above. The difference
was that the impact velocity of the flyer plate was reduced from 2.1 km/sec to
1.54 km/sec. The simulation of this experiment is shown in Figure 3. Notice
again that the major features are captured by the simple model. No adjustment
of any parameters was made. The utility of simple elastic-plastic ideas for mod-
eling certain ceramics is shown here.

SIMULATION OF BALLISTIC EXPERIMENTS

The experiments of (Vincent and Chang, 1990) were simulated with various
of the modeling techniques previously discussed. Figure 4 shows a schematic
of the target for one of the two experiments considered here. A front tile of
A12 0 3 (Coors AD85) is followed by a thin layer of Isodamp shock absorbing

material. For high velocity impacts involving blunt projectiles, the Isodamp
was necessary to reduce the initial stress pulse so that it remained in the range
that the stress gauges could measure (less than 100 kbar). Following the Iso-
damp is a second tile of A120 3 (Coors AD94). Finally, the arrangement is

backed up by a plate of 5083 aluminum. The ceramic, Isodamp, and aluminum
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plates were all bonded together with an epoxy patch kit. The stress gauges were
firmly bonded to the ceramic plates.

.12 -

/ Experiment
S.080 _ Simulation

• .040 -

0. ',- l I

.50 1.0 1.5 2.0 2.5

Time (microseconds)

Figure 3, Simulation of SiC symmetric plate impact at 1.54 km/
sec.

'guges

Figure 4, Instrumented ballistic test target

In the first experiment the above target assembly was impacted by a 20rmm
blunt nose steel projectile at 2602 ft/sec. In the second experiment, a 90 degree
conical nosed projectile was impacted upon the target as shown above with the
exception that the Isodamp layer was not present. In that test the two alumina
plates were directly adhered to each other with the stress gauge in between
them.
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The blunt nose projectile experiment, Saturn 3, was analyzed with the DY-
NA2D finite element code. The projectile and target were discretized into 1943
elements. The axial stress measured at the second interface between the Iso-
damp and ceramic is compared with the simulation in Figure 5. The simulation
result is taken from the element stress in the ceramic at the closest position to
the interface with the Isodamp. The fracture stress was chosen to be 3 kbar
(Rosenberg et al., 1985) and the deformation parameters for the A12 0 3 (esti-

mated from Johnson and Stryk (1990) were: c1 = 1.621 Mbar, c2 = 1.945 Mbar,

c3 = 1.929 Mbar, c4 = 0., c5 = 0., %°= 39 kbar. Results are shown for two cases:

elastic-plastic with no fracture, and elastic-plastic with fracture (setting c°,= 0
after fracture)

In Fig. 5, the general experimental trend is predicted but there are substan-
tial differences observed as well. The experiment quickly loads to about 36 kbar
and maintains that approximate stress for 2-3 microseconds. It then relaxes to
about 10 kbar, shows evidence of a secondary loading wave and finally drops
to zero. The finite element solutions show much more wave interaction than the
experiment. The models predict both the initial stress peak and second peak (at
-3.5 microseconds) but recover to the 20-25 kbar range for the time between.
The model which allows fracture predicts a lower stress throughout the history
as expected. The difference between the simulation with fracture and the exper-
imental curve is indictitive of the post fracture strength of the ceramic. The
elastic-plastic simulation without fracture provides the better prediction here
since it has strength throughout the event.

Leaving the ceramic intact increases the stresses relative to the simple
fracture model predictions but it is physically unreasonable. Rather, consider
the observation that ahead of the penetrator the ceramic fractures into fine rub-
ble. It is believed that as this confined rubble is deformed the granules will slide
over one another creating free space between them. As in all granular materials,
both the shear stress and dilitation rate of a granular material are pressure de-
pendent, hence, the c4 term in equation 2.

In order to include this post-fracture, pressure dependent strength a simula-
tion was conducted with the flow stress constant before fracture (r = 39 kbar)
but after fracture the flow stress depends upon pressure according to a = 0.45
kbar + 1.61 p. This expression was derived from Arrowood's data for slow
strain rate confined compression of powered alumina (Arrowood, 1987). The
results, shown in Figure 6, do not differ very much from the elastic-plastic with-
out fracture result from Figure 5. The pressure dependent flow stress after frac-
ture raises the stress signal after the initial peak and provides better agreement
with experiment than the model which has no .post-fracture strength. The later
time stresses were overpredicted though.
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Figure 5, Comparison of experiment Saturn 3 with simple
elastic-plastic fracture model.
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Figure 6, Simulation of Saturn 3 experiment with model having
post-fracture, pressure dependent flow stress.

A major deficiency in these simulations of the blunt nose impact test is the
failure to keep the stress level in the 30 kbar range during the 2 to 4 microsecond
time frame.

The second ballistic experiment (Uranus 6) involved the impact of a coni-

443



cally nosed, steel projectile at 2540 ft/sec. The target assembly was similar to
Figure 4 with the exception that the Isodamp layer was removed. The pointed
nose of the projectile produced a more gradual loading wave for the ceramic
material away from the impact point. The experimental curve in Figure 7 shows
the gradual load and unload profile for the stress at the ceramic tile interface.

This experiment was simulated with two hydrocodes. The DYNA2D code
as used with the same material model as discussed above (equations 1 and 2)
and the CALE code was used with just perfectly elastic-plastic behavior (no
fracture or rate dependence). It was necessary to use the Eulerian capabilities
of CALE to be able to run the simulation to 14 microseconds. The DYNA2D
code, being a Lagrangian formulation, developed highly distorted elements in
the penetrator that did not allow the solution to proceed beyond about 10 micro-
seconds. These distorted elements could be removed using an erosion algo-
rithm but that gave spurious stress history results due to the jackhammer effect.
Large stress spikes were calculated with surfaces coming into and out of contact
as elements were deleted. Not only did this make it difficult to compare the
stress history with the experiment but the effect of these nonphysical stress
spikes on the fracture behavior could be severe. Having stress history data il-
lustrates the importance for having a continuous Eulerian calculation for these
brittle materials and not being satisified with just being able to push a calcula-
tion to show penetration.

The elastic-plastic result from CALE is shown in Figure 7. The loading
ramp is predicted very well. The peak stress is overshot by a little and the un-
loading ramp is delayed relative to experiment. Overall, the simulation gives a
very good prediction. The maximum stress overshoot and delay in unloading
can, perhaps, be attributed to the neglect of fracture in the calculation.

Since the CALE code does not currently have any fracture models, the DY-
NA2D (Lagrangian) code was used to simulate the first 10 microseconds of the
impact. The material model was the same as that used in the blunt nose projec-
tile simulation reported in Figure 5. The flow stress was constant before frac-
ture (a = 39 kbar) but after fracture the flow stress depends upon pressure ac-

cording to ay = 4.5 kbar + 1.61 p.
The result in Figure 8 was taken for the third element away from the center-

line. The stress response for the blunt nose projectile was found to be insensi-
tive to slight gauge misalignment away from the line of sight of the projectile.
For the pointed nose projectile, the stress response did vary with position away
from the centerline. It was observed in post-mortum examination of Uranus 6
that the stress gauge was slightly off line of the center of the projectile impact.
Hence, the simulation result was also taken from a position slightly off the cen-
terline. Again we observe that modeling the alumina with these techniques
gives satisfactory prediction of stress history during the initial phase of impact.
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Figure 8, DYNA simulation of Uranus 6 experiment using
fracture and pressure dependent flow stress
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CONCLUSIONS

Simple elastic-plastic modeling techniques were shown to effectively model
the behavior of silicon carbide under impact conditions. It was shown to behave
like a rate dependent elastic-plastic material in the one dimensional experiments
of (Kipp and Grady, 1989). A simple maximum stress fracture criterion ade-
quately reproduced the unloading wave behavior.

The ballistic experiments of (Vincent and Chang, 1990) provided stress ver-
sus time profiles useful for modeling of alumina. The elastic-plastic model pre-
dicted the general trends and intial pulse magnitude quite well. The model did
not fully predict the stress magnitude after fracture. This is attributed to the
need for a post-failure damage model. This is the direction of future research.
It is recognized that elastic-plastic modeling should be more satisifactory for the
ceramics considered here (SiC and alumina) than for all other ceramics but this
work does show a place for elastic-plastic modeling.
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Abstract

A plate impact experiment has been used to study dynamic ductile rupture at strain

rates up to 10 5 s-1 in a spheroidized 1045 steel. Plane strain tensile loading is

generated by impacting a deeply notched specimen by a thin elastic flyer plate. The

notch, parallel to the impact plane and extending halfway through the diameter, is

filled with steel shims to transmit compressive waves. The tensile wave reflected from

the rear surface causes tensile loading at the blunt notch tip, resulting in ductile void

nucleation and growth. Free surface velocities are monitored at three points by means

of a normal velocity interferometer. Extensive void growth is observed as the impact

velocity is increased. Relative notch opening displacement is found to depend on the

initial notch width as well as the impact velocity. At impact velocities above 0.14

mm/yus, void nucleation due to the reflected tensile wave is also observed along a

plane parallel to the rear surface. This spallation is studied in one version of the plate

impact experiment that does not involve a notch. Scanning electron microscopy of the

rupture surface shows that spallation occurs mainly by cleavage of the ferrite grains

and is assisted by void nucleation and growth on separated void sheets. A dynamic

finite element method based on a constitutive law proposed by Gurson for porous

materials is used to simulate the plate impact experiment.

1. Introduction

While second phase precipitates or particles greatly enhance the
strength of materials by acting as obstacles to dislocation movement,
see, e.g., Dew-Hughes and Robertson (1960)[1], Meiklejohn and Skoda
(1960)[2], Ashby (1964)[1', Kocks (1966)[4], Foreman and Makin (1966)[51,
Liu and Gurland (1968)[6], they also provide sites for the initiation of
microvoids during plastic deformation. The nucleation, growth and sub-
sequent coalescence of voids play the most important role in the process
of ductile failure, (Gurland and Plateau (1963)[7], Thomson and Han-
cock (1984)[8], and Thompson (1987)[9]). Voids nucleate through particle-
matrix debonding and through particle cracking, (Gurland and Plateau
(1963)[1]). The early studies by McClintock (1968)[1"] for a cylindrical
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void and Rice and Tracey (1969)[11I for a spherical void focused on the
quasi-static growth kinetics of a single cavity in an infinite elastic-plastic
matrix. Their work showed the dependence of void growth on the tri-
axiality of the stress state. Brownrigg et al (1983)[121 found that the
superposition of pressure severely retards the nucleation and growth of
voids at carbide particles and that fracture strain increases linearly with
pressure in a spheroidized 1045 steel. Void initiation and growth are
explained by Gurland and Plateau (1963)[1] and Broek (1973)[131 as a
result of dislocation loop pile-ups against particles. The study by Park
and Thompson (1988)[1"] showed that void nucleation appears to be con-
trolled by a stress-based criterion and that void growth and coalescence
are controlled predominantly by plastic strain in tensile tests. Fisher and
Gurland (1981)[1'] found that larger particles and grain boundaries are
more favorable sites for void nucleation.

There have been extensive studies of the ductile rupture process
based on the continuum theory of plasticity. Berg (1962)[16] described
the motion of an elliptical cavity in a plane viscous body by a conformal
transformation. The deformation and conditions under which an iso-
lated void may become ellipsoidal and collapse into the shape of a crack
or needle were studied by Budiansky, Hutchinson. and Slutsky (1982)[17]
and Budiansky (1983)[18]. Based on the hypothesis that coalescence is
the result of internal necking of adjacent cavities, Thomason (1968)[191
analyzed the evolution of a regular array of cavities subjected to plane
strain triaxial stress states. Blume (1988)[20] studied the interaction be-
tween two contiguous spherical voids under radially symmetric remote
loading in a hyperelastic solid and found that the voids are attracted to
each other for most remote load triaxialities; separation is predicted only
under stress states which are nearly uniaxial along the line of centers of
the voids. The interactions between periodically distributed voids and
their growth and collapse have also been analyzed by Nemat-Nasser and
Iwakuma (1982)[21] and Nemat-Nasser, Iwakuma and Accorsi (1986)[22].

Gurson (1975,1977)[23,24] developed a phenomenological constitutive
relation by introducing a plastic potential depending on the material
strength, the void volume fraction and the hydrostatic stress. The effects
of voids are represented by a single parameter, the void volume fraction,
through which materials with any porosity exibit macroscopic dilatancy
and pressure sensitivity. Tvergaard (1981, 1982)[25,26] modified the Gur-
son model by amplifying the void volume fraction and hydrostatic stress
in order to bring the predictions closer to the results of full numerical anal-
yses at small void volume fractions. Tvergaard and Needleman (1984)[27]
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further modified the yield condition to model the loss of macroscopic
stress-carrying capacity associated with void coalescence.

Several investigators have considered the effects of crystalline slip
on the deformation of voids. Nemat-Nasser and Hori (1987,1988)[28,29]
showed that, as a result of the local anisotropic plastic flow by slip on
crystallographic planes, an initially circular (2D) or spherical (3D) void
quickly deforms into a noncircular (2D) or nonspherical (3D) shape even
under all-around uniform tension or pressure.

Hori and Nemat-Nasser (1988)[30] studied the dynamic response of
crystalline solids with micro-cavities based on an approximate method
for calculating void deformation in crystalline bodies. They found that
the global response of the material toughens as the loading rate increases.
Studies on void nucleation, growth and coalescence under dynamic condi-
tions are reviewed by Curran, Seaman and Shockey (1987)[311. One of the
experimental configurations used to study ductile rupture under dynamic
conditions involves impacting a flyer plate against a target specimen of
the same or different material. Upon reflection from the rear surface of
the target the compressive wave becomes a tensile wave propagating in
the opposite direction. This tensile wave causes initiation, growth and
coalescence of voids, leading to spallation. Thorough reviews of spalla-
tion have been reported by Meyers and Aimone (1983)[321 and Asay and
Kerley (1987)[33]. Continuum mechanics modeling of spallation based on
void nucleation and growth has been done by Rajendran (1988)[34] and
Eftis et al (1991)[1"] with finite difference methods.

The objective of the current study is to obtain dynamic rupture at
strain rates up to 105 s- 1 caused by the non-uniform stress and strain
fields resulting from the diffraction of a tensile plastic stress wave by a pre-
cut notch in the middle of a specimen in a plate impact experiment. The
experiment is simulated by means of a dynamic finite element method.

2. Material

The material is 1045 steel obtained in the form of cold drawn bars
2.5 inches in diameter. Its chemical composition is given in Table 1.
The spheroidizing treatment involves austenitizing at 900'C for 1 hour,
quenching in agitated ice water and normalizing at 700'C for (A) 24
hours, (B) 48 hours and (C) 120 hours. To obtain a fullly marten-
sitic structure as required for obtaining a uniform distribution of carbide
spheroids during normalization, the material is cut into circular disks
62.5 mm in diameter and 10 mm in thickness to ensure a sufficiently
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high cooling rate. After normalization, the specimens are air-cooled to
room temperature. Figure 1 shows the microstructure produced by nor-
malization A. The microstructure is that of a spheroidized steel con-
sisting of a fine dispersion of cementite particles embedded in a ferrite
matrix. The particle size distributions are measured by an interception
line method which involves recording the number of particles intercepted
by randomly placed test lines and the corresponding intercept lengths,
for a plane section of the specimen. The particle volume fraction f is
obtained by dividing the number of grid points falling in areas occupied
by the particles by the total number of grid points in the area covered by
a uniform test grid. The microstructural parameters obtained by these
means are listed in Table 2. These parameters obey the relations

f = N1 . L = N1 . ds = N. 2d) (2.1)

which are exact for uniform particles which are spherical and randomly
distributed, Ashby (1964)[ ] and Underwood (1970)[361. In eqns. (2.1),
N1 is the number of intersections with the particles per unit test line, L
is the mean particle intercept length, d, is the mean particle diameter on
a random section and d is the three-dimensional particle diameter. Also
in Table 2, U, denotes the standard deviation of the particle diameter
d, A is the mean surface-to-surface particle distance calculated from A =
L(1 - f)/f.

Table 1 Chemical Composition of the 1045 steel, wt%;

Fe C S Mn P

98.74 0.47 0.028 0.75 0.012

Table 2 Microstructural Parameters;
Heat f d On A

Treatment % ,um 1um 1um

A 6.54 0.54 0.43 5.14
B 6.52 0.84 0.75 8.03

C 6.58 1.18 0.90 11.17

Pressure-shear plate impact experiments, described by Clifton and
Klopp, (1985)[37] were conducted to study the material response under
high strain rates of the order of 105 s-'. By measuring the transverse
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particle velocity at the rear surface of the anvil plate vf,, the shear stress
7 and nominal shear strain rate 4 are obtained as r = (pc 2 )vf 8 /2, and
4 = (Vosin9 - vf 3 )/h, where pc2 is the shear impedance of the anvil plate,
Vo is the projectile velocity, 0 is the skew angle of the specimen, and h is
the initial thickness of the specimen. The shear strain rate is integrated
to yield the shear strain y(t) = fý 4(r)dr.

The resulting dynamic stress-strain curves are shown in Figure 2
together with those obtained at a lower strain rate of 4.05 x 103 s- 1 in
torsional Kolsky bar tests and in quasi-static torsional tests by Walter
and Duffy (1990)[381 for a spheroidized 1045 steel with a microstructure
similar to that produced by normalization C above. Clearly, the materials
show a strong strain-rate sensitivity over the rate regime studied.

Longer normalization times produce coarser carbide particles and
lower flow stress levels. The stress level however, does not change signif-
icantly with an increase in the normalization time from 48 hours to 120
hours (mean particle diameters 0.84 jam to 1.18 pum) whereas a signifi-
cant reduction is noticed between the 24 and 48 hour treatments (particle
diameters from 0.54 ftm to 0.84 jam).

Over the range of strain rates from 10-4 s- 1 to 3.0 x 103 s-1 the
material response can be characterized by an empirical visco-plastic con-
stitutive relation of the form

L1 g (yP )i (2.2)

where 4i is the shear strain rate, r is the shear stress, 4o = 1 x 10' s- 1

is a reference strain rate, m = 75 is a rate sensitivity parameter and

g(-fP) = ro[1 + exp(w - y//,)](1 + 7 P/- 0 )f, (2.3)

represents the stress-strain relation at a constant shear strain rate of
4 = yo. In Eqn. (2.3), -yP is the plastic shear strain, 7o = 179 MPa is
a reference shear stress, ^to = 7o/E is a reference shear strain, n = 0.13
is the strain hardening exponent, parameters w = 0.65 and -y, = 0.0043
are introduced to model the higher flow stress levels at small strains due
to the lack of a large mobile dislocation density in the annealed material.
These parameters are chosen by fitting the initial part of the velocity
profiles at the rear surface from the normal impact experiment of un-
notched specimens.



In order to account for the behavior at higher strain rates the relation
(2.2) is modified to

p _ 7172 (2.4)

where ýyP is the plastic shear strain rate and

72 = j ..exp a j]7 (2.5)

is a mathematical model of the limiting viscoplastic response at very high
strain rates. In Eqn. (2.5) a = 15 is a strain rate sensitivity parameter
for strain rates above, say, 3 x 10' s-1. The form (2.4) limits the strain
rate to values less than m It also provides a smooth transition between
the measured response yP = "5(r, -P) at strain rates less than, say, 103

s-1 , and the limiting behavior 4P = 42 (", -7P) at strain rates greater than,
say, 10' s-1. The value of ;/m is not available from experiments; a value
of 5 x 10' s-1 is chosen, primarily for the numerical purpose of avoiding
the need for unreasonably small time steps at early times when the shear
stresses are large.

Stress-strain curves in shear, predicted by Eqns. (2.2-2.5) for con-
stant strain rates are compared with those obtained from the experiments
in Figure 2. All the parameters are chosen to best fit the material response
for specimens with normalization A, which are used in the subsequent dy-
namic ductile rupture experiments. Because the quasi-static curves and
the torsional Kolsky bar curves were obtained from a spheroidized 1045
steel with a microstructure similar to that produced by normalization C
which has a larger mean particle size and lower flow stress level, the pa-
rameters in the formulation are intentionally chosen to produce slightly
higher flow stresses at the corresponding strain rates. It should be re-
called that pressure-shear plate impact tests and torsional tests provide
more accurate measures of the material response at strains greater than
a few percent than at very small strains.

3. Experiment

The experimental configuration for the dynamic ductile rupture ex-
periment is shown in Figure 3. The specimen is a circular disk, 59 mm in
diameter and 8 mm in thickness. The notch has a width of approximately
0.35 mm and is cut halfway through the diameter of the disk by electrical
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discharge machining (EDM). The notch is filled with stainless steel shims
to transmit the compressive pulse. The experiment involves plane strain
loading of the notched specimen by impacting it with a thin elastic flyer
plate and reflecting the compressive pulse from the rear surface of the
specimen. The flyer plate has a thickness of 3 mm and the same diame-
ter as the specimen. The impact results in the loading of the specimen by
a plastic wave whose main pulse has a duration of approximately 1 mi-
crosecond. Figure 4 shows the time-distance diagram for the main wave
fronts that traverse the specimen and flyer. Upon arrival at the notch the
reflected tensile wave is diffracted, causing straining at high rates around
the notch tip. The reflected tensile wave and its diffraction by the notch
causes dynamic ductile void nucleation, growth and coalescence in the
specimen. To study the plastic wave profiles that propagate through the
specimen and the ductile rupture (or spallation) caused by the tensile
wave in the absence of the notch, one version of the experiment involves
the impact of an un-notched specimen of the same dimensions. These two
types of experiments allow comparison of the ductile rupture processes
initiated by a tensile plane plastic wave alone and by its diffraction from
a blunt notch.

The motion at three separate points on the rear surface is moni-
tored by a multi-beam displacement or velocity interferometer system.
By relating the motion of the rear surface at several points to the void
nucleation and growth near the notch tip, and the initiation and propa-
gation of the spalling cracks, a better understanding can be obtained of
the various stages of void nucleation, growth and coalescence and their
effects. The multi-beamsplitting scheme used in the system has been de-
scribed in detail by Mello et al (1991)[1"). Each leg of the system is a
normal velocity interferometer described by Barker (1968)[40].

A quadrature optical setup, similar to but different from those de-
scribed by Hemsing (1979)[411 and Bouricius and Clifford (1970)[42], is
used for one of the points to obtain two interference signals which are 900
out of phase to allow unambiguous identification of the absolute phase of
the interference signals.

4. Numerical Simulation

Finite element simulation of the impact experiments is conducted
by a finite deformation formulation by Needleman et al (e.g., 1982, 1988,
1990).[26,43-451 The principal feature of this formulation that is of interest
in the present investigation is the modeling of viscoplastic deformation
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and material failure due to the nucleation and growth of voids. The
flow rule for a material containing voids is derived from a plastic poten-
tial introduced by Gurson (1975, 1977)[231241 and modified by Tvergaard
(1981)[251 and Tvergaard and Needleman (1984)[27],

2q'T
-I) = -U- + 2qif*cosh( 2a)- 1 - q1

2 f* 2 = 0. (4.1)

In (4.1) oe and Ch are the macroscopic equivalent Cauchy stress and the
macroscopic hydrostatic stress, respectively, i.e.

2 3 , 1
2 - : *; Oh = -1-- :I, (4.2)

where o and o' = Y--UhI are the Cauchy and the deviatoric Cauchy stress
tensors, respectively; I is the second order identity tensor and or' : or'
denotes the dyadic product o`o oj. The stress & is an equivalent stress
in the matrix material. Parameters qx and q2 are dilatancy and pressure
sensitivity parameters introduced by Tvergaard (1981,1982)[25,26]. The
quantity f* is a function of the void volume fraction f defined as

* f _< f-ý;
f* fý + ,-7oA f - f.) f > f, 43f (43)

where f, = 1/ql is the value of f* when the material loses all stress
carrying capacity, corresponding to the rapid void coalescence in the final
stages of ductile rupture; as f --+ ff, f* -- f,; f, is the critical void
volume fraction after which the material loses its strength at accelerated
rates. Values for the parameters fc, ff, q1, q2 that are used in the
simulation reported here are f, = 0.07, fj = 0.15, qi = 1.25, and q2 = 1.3.

The plastic flow rule is obtained from (4.1) by writing the plastic
part of the rate-of-deformation tensor, DP, as

rp/0 !•3u' 3 q2Uh)I 44

P -1 L k 2 + 3qlq 2f*sinh( 26U )1 (4.4)

where the proportionality factor A is obtained by equating the plastic
work rate to the matrix energy disspation rate.

The damage parameter or the void volume fraction f evolves through
the initiation of new voids and the growth of existing voids according to
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f = fnucleation + ifrowth . (4.5)

To model void nucleation through both a strain-controlled mecha-
nism and a stress-controlled mechanism the nucleation rate is taken to
have the form

fnucleaton = D!"+ 1(h +a h), (4.6)

where
D fN xp-- EN)N ], (4.7)

S fN exP + Uh) -UN )2] (4.8)
00S N V2 1\ aOSN

The parameter fN is the volume fraction of void nucleating particles,
UN is the mean void nucleation stress, SN is the standard deviation of
nucleation, 6N is the mean void nucleation strain and UoSN is the standard

deviation of stress-controlled nucleation. Values used for the respective

parameters are: fN = 0.06, UN = 2700 MPa, SN = 0.01, EN = 0.041 and

Uo = v'3o = 217 MPa.

The growth rate of existing voids is determined from the plastic
incompressibility of the matrix material as

fgrowth = (1 - f)DP : I. (4.9)

The numerical implementation of the material model has been de-

scribed by Needleman and Tvergaard (1990)[44].

5. Results and Discussion

The experiments are summarized in Table 3 for the un-notched

specimens and Table 4 for the notched specimens. All experiments are

conducted with impactors made of a Hampden high carbon tool steel

which has a proportional limit of 1600 MPa in shear and remains elastic

throughout the experiment. 459



Table 3 Experiments with un-notched Specimens;

Shot Vo Tf T8  d
# mm/1 us mm mm mm

9006 0.155 3.12 8.12 2.34
9101 0.141 3.08 8.05 *

9102 0.138 3.08 8.01 **

no spall; **: void initiation observed in lo-
cations 2-2.4 mm from rear surface.

Table 4 Experiments with notched Specimens;

Shot Vo Wo W AW/Wo Tf T8  d

# mm/js mm mm m rm mm mm

9002 0.140 0.372 0.438 17.6 3.06 7.98 *

9003 0.196 0.336 ** ** 3.06 7.98 2.39
9004 0.150 0.343 0.521 52.0 3.18 8.05 2.22
9005 0.156 0.413 0.593 43.6 3.12 8.12 2.03

• No spall, void initiation observed; ** Spall crack connected with notch; V0 :
projectile velocity; W 0 : average notch width before experiment; W: notch width
at middle section after experiment; Tf: flyer thickness; Ts: specimen thickness;
d: distance between spall plane and rear surface of specimen.

The relative notch opening AW/Wo in Table 4 can be used as an ap-
proximate measure of the amount of plastic deformation that the notch
tip material undergoes. As predictable intuitively, the relative notch
openning depends on the impact velocity as well as the initial notch width
W0 - the smaller the notch width the larger the relative notch opening
AW/Wo. At impact velocities of approximately V0 = 0.140 mm/lps the
tensile wave, reflected from the rear surface of the specimen begins, to
cause void nucleation at 2 - 2.4 mm from the rear surface. As the impact
velocities are increased this tensile wave causes the material to fail. Scan-
ning electron microscopic examination shows that the spallation initiates
as cleavage of the ferrite matrix grains and is assisted by void coalescence
as discussed in section 5.1.

5.1 Scanning Electron Microscopy

The impacted specimens are sectioned along a plane perpendicular
to the impact face and the notch front. The revealed surface is ground,
polished, etched with 4% picral and examined in a JEOL 840F scanning
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electron microscope (SEM). Figures 5(a-b) show the notch tip region
of the specimen from shot 9002. Voids are found in a region within
about 5-10 ,rm in front of the notch tip. Nucleation occurs through (a)
particle-matrix debonding; (b) particle cracking and (c) particle-particle
separation as shown in Figure 5(b). The voids show apparent growth
after nucleation. The notch width, which was approximately 372 prm
wide initially, increased by 17.6% to 438 pum after the impact. As the
impact velocity is increased to 0.156 mm/1 us (shot 9005) voids are found
in a larger region, approximately 30 - 40 pum in front of the notch tip.
The voids show substantial growth, and begin to coalesce, as shown in
Figure 6. This is the result of the increased amount of plastic straining
indicated by the relative notch width increase of 43.6% at this impact
velocity. The growth and coalescence of voids lead to the onset of ductile
rupture at the immediate notch tip region where severe plastic straining
occurs, as shown in Figure 6. Figure 7 shows that void growth tends
to localize in areas at the notch tip region. These areas often appear
as bands extending from the notch tip where a cavity is formed. The
voids inside the bands undergo substantial growth and coalescence. The
formation of these void bands may be related to notch surface defects
existing before the experiments.

Voids also appear in a strip about 2 - 2.4 mm from the rear surface
in the un-notched lower half of the specimen. These are initiated by the
reflected tensile wave. The voids in the strip do not show substantial
growth at impact velocities of the order of V0 = 0.140 mm/1us. As the
impact velocity is increased the material ruptures along a plane parallel to
the rear surface in a predominantly brittle manner. Impact experiments
of un-notched specimens as well as notched specimens show that when
the tensile wave is not sufficient to spall the specimen, voids can initiate
during the tensile pulse, but they are relatively small. Spallation results
if the impact velocity is increased to a value higher than 0.150 mrrn/s.
Figure 8 shows the typical morphology of the spalled regions. Only a few
voids are observed along the spall plane. It appears that spallation initi-
ates as cleavage fracture fragments. These segments link by lateral shear,
which involves void growth and coalescence, (Figure 8). This observa-
tion is supported by a study of the spall plane which shows transgranular
cleavage of the ferrite matrix and cleavage facets connected by ductile
necking of the matrix material. The transgranular cleavage planes link
up via inclined void sheets, (Figure 9), which are formed through the lat-
eral shear seen in Figure 8. These void sheets appear to form primarily
at grain boundaries.
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The void band is observed only on the un-notched half of the speci-
men; a small number of nucleating voids are observed at the same distance
from the rear surface on the notched half. The explanation may be that
the reflected tensile wave is reflected back toward the rear surface, by the
notch surface, as a compressive wave, thereby reducing the duration of
the tensile loading and keeping the putative spall plane in compression
for most of the loading time.

5.2 Free Surface Velocity-Time Profiles

Figure 10 shows the free surface velocity profiles from the experi-
ments with un-notched specimens listed in table 3, and finite element
simulations. The parts of the profiles corresponding to the different wave
fronts shown in the x-t diagram (Figure 6) are labeled as: A-Arrival of
the compressive wave at the rear surface; B-unloading of the main com-
pressive pulse at the rear surface; C-tensile damage location (Figure 4)
and its arrival at the rear surface (Figure 10); D-damage signal at the
rear surface; and E-reflected compressive pulse arriving at the rear sur-
face; The initial part of the experimental curves is used to determine the
material parameters w and Yr in Eqn. (2.3). These two parameters are
introduced to model the higher flow stresses at small strains due to the
lack of a large mobile dislocation population in the annealed material.

The calculated profiles shown in Figure 10, both without voids and
with the inclusion of void nucleation and growth, are simulations of the
experiments with an impact velocity of Vo = 0.140 mm/1 us. Comparisons
of the experimental profiles with those from the calculation indicate that
the 'bumps' at about 2900 ns correspond to tensile damage located ap-
proximately 2.0 - 2.4 mm from the rear surface. This interpretation is
confirmed by the SEM observation, described above, that void nucleation
occurs at these locations for impact velocities of the order of 0.140 mm/1 us
and that spallation occurs at higher impact velocities through transgran-
ular cleavage and ductile rupture by void growth and coalescence.

Figure 11 shows the free surface velocities at three points, located
at 0.7 mm, 1.0 mm and 1.4 mm in front of the notch tip, for shot 9002.
Only the time interval after the the arrival of the main compressive wave
is shown. Point D corresponds to the arrival of the diffracted wave re-
flecting from the impingement of the tensile wave on the notch. For
the calculation shown, void nucleation and growth have been suppressed.
Thus the computed profiles represent velocity profiles without damage.
Further simulations will be conducted to study the effect of void nucle-
ation and growth on the free surface velocity profiles.
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6. Concluding Remarks

Dynamic ductile rupture has been obtained in plate impact exper-
iments of both notched and un-notched specimens. Ductile void nucle-
ation and growth occur due to the reflected tensile wave alone and to its
diffraction from a blunt notch. Void growth and coalescence are observed
to occur with increased plastic straining resulting from increased impact
velocities. As the impact velocity is increased, the tensile wave induced
spall appears to be transgranular cleavage of the ferrite matrix assisted by
ductile rupture through void growth and coalescence on separated void
sheets.

Numerical simulations of the impact experiments have produced free
surface velocity profiles that agree with the measured profiles except for
features that can be attributed to the ductile nucleation and growth of
voids. Further efforts will be directed toward better simulation of void nu-
cleation, growth and coalescence under the dynamic conditions obtained
in the experiments.
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Fig. 1 Microstructure of Spheroidlized 1045 Steel
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(a) Notch Tip Region

(b) Void Nucleation at the Notch Tip

Fig. 5 Void Nucleation in the Notch tip Region
Shot 9002, Impact Velocity Vo = 0.140 mm/1 us
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Fig. 6 Void Growth and Coalescence in the Notch Tip Region
Shot 9005, Impact Velocity VO 0.156 mm/,as

Fig. 7 A Void Band at the Notch Tip, (Shot 9005)
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Fig. 8 Linkage of Cleavage Fracture Segments
through Lateral Shear, (Shot 9005)

Fig. 9 Void Sheet at a Grain boundary
between Cleaved Ferrite Grains

(Shot 9006, Va = 0.155 mm/ps)
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Plastically Induced Surface Roughness:
Phenomena and Mechanism
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Abstract
The surface roughness of a metallic material varies as a function of the plas-
tic deformation it has experienced. Investigations on plastically induced
surface roughness in literature are incomplete because the roughness pa-
rameter used can not define the surface roughness completely. Furthermore
the mechanism of plastically induced surface roughness is, to a large extent,
unknown. The purpose of this work is therefore twofold: First, a clearer
picture of the phenomena is provided through a more detailed description
of surface roughness and its relation to material property, stress mode,
and strain path. Second, the mechanism of the plastically induced surface
roughness is experimentally studied on both macroscopic and microscopic
scales.

Introduction
Studies on the roughening of free surfaces of metallic materials due to plas-
tic deformation have been reported.'` These studies discussed the influ-
ence of stress mode, 2' 4' 5'8 grain size," 2'7 material property, 5'8 temperature,7

strain rate,7 and hydrastatic pressure7 on the characteristics of surface
roughness. Models relating surface roughness and some of the factors
mentioned above have been propose."3'6 '9 Despite differences in test con-
ditions such as the initial surface roughness, some conclusions have been

*Formerly a graduate student at SUNY, Stony Brook.
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drawn. For room temperature tests, the major conclusion is that the ver-
tical roughness of the surface increases linearly to the magnitude of plastic
deformation and to the average grain size of the test specimen, but it is
independent of stress mode, hydrastatic pressure, strain rate, and material
property.

This conclusion was made based on some experimental observations and
the resulting empirical relations. No investigations, to the authors' knowl-
edge, have been devoted to the mechanism of surface roughness induced
by plastic deformation. Besides, almost all the studies only discussed the
surface vertical characteristics. Thus the behavior of surface horizontal
characteristics during plastic deformation is, to a large extent, still un-
known.

This work is designed to investigate the surface roughness response to
plastic deformation of different materials and to study its mechanism by
using coarse grained specimens such that the deformation of each individ-
ual grain due to plastic deformation may be revealed and characterized. It
is hoped that this approach will provide an explanation to the roughening
mechanism induced by plastic deformation.

Roughening Phenomena
Plastic deformation roughens free surfaces of metallic material by produc-
ing, among other things, slip bands within grains, and relative rotation and
sliding among grains as shown in Fig. 1. A rough surface may be completely
described by two parameters: one vertical(root-mean-square roughness o')
and the other horizontal(correlation length T). These parameters may be
approximately evaluated by using the profiles measured by a mechanical
profilometer such as that shown in Fig.2. (A measured actual surface pro-
file is shown in Fig.6a.) For a surface profile represented by discrete values
h(i) measured by such a system, these two parameters are defined as

I h2(i) (1)

and
ZiY-Th(i) x h(i + T) 1 1

JiýV h2 (i) e

where N is the number of sampling points, and e is equal to 2.718.
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Surface roughness response to plastic deformation was studied on four
different materials, namely: copper, aluminum, stainless steel, and hot-
rolled steel. The specimens were cut along the rolling direction into a 'dog-
bone' shape with dimensions of 2.15mm thick, 20.00mm wide and 125mm
long. The surfaces of the specimens were then polished by a cloth buffer
wheel and aluminum powder to an initial surface finish of a < 0.051im.
Specimens were loaded on a universal testing machine to plastic deforma-
tion at incremental steps. At each step, the specimens were unloaded for
surface roughness measurements. Surface roughness was measured using a
system as schematically shown in Fig.2 with a stylus having a tip radius of
5 pm. The plastic deformation was evaluated in terms of true strain which
is defined as

et = ln(l/1o) (3)

where ct is the true plastic strain; 1, and I are the specimen gage length
before and after plastic deformation, respectively.

Figure 3 shows the experimental results of both the vertical and the
horizontal surface roughnesses values versus true strain et for the four ma-
terials. As a first approximation the vertical roughness a is seen to increase
linearly to true plastic strain (Fig.3a); and the horizontal parameter, the
correlation length T decreases with the increasement of tue strain(Fig.3b).
These relations may be characterized by simple mathematical models as
following

wa = act + b (4)

and
T c (5)

et + d

where a, b, c, d and e are constants.

As shown in Fig.3 the surface vertical roughness seems to be indepen-
dent of material property(Fig.3a); whereas the surface horizontal roughness
seems to be dependent of material property(Fig.3b).

The influence of stress mode in terms of the ratio of principal stresses,
which varied from -0.577 to -3.732 in a study, was investigated previously
using specimens made of copper alloy in a disk shape as shown in Fig.4.
Experimental results8 suggest that the surface roughness is independent of
stress mode.
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The strain path effect on surface roughness was also investigated using
the set-up as schematically shown in Fig.4. Different strain paths in terms
of principal strain ratio, which varied from -3.1 to 0.233 in the present
work, were obtained by loading the specimen through different angle a.
Figure 5 shows some of the strain paths achieved in the test, some of
which were achieved by a one-step, while the others by a two-step loading
to the final effective strain of 2.3%. Observations made on copper alloy
material show that surface roughness is dependent on strain path. How-
ever, if no reverse yielding occurs, the process is virtually independent of
strain path. (A strain path with reverse yielding is shown in the Fig.5 for
a = 1150 -+ -15').

A Model for Roughening Mechanism
The surface roughening mechanism induced by plastic deformation was ex-
perimentally investigated using aluminum specimens with a grain size of 1.4
millimeters. Microscopically, the fundamental cause to surface rougheness
is due to dislocation movement. Macroscopically, the process manifests
itself in a number of ways: First, more and more slip bands come into
being within each individual grain. Second, grains rotate with respect to
each other and the resulting out-of-plane component of the relative rota-
tion contributes to surface roughness. Third, neighboring grains may slide
relatively to each other forming steps at the grain boundaries as can be
seen in Fig.6a. Some other mechanisms, such as the bending of a single
grain (section A-B in Fig.6a) and the rotation of multi-grains (section C-D
in Fig.6a), may also come into play.

In order to provide an understanding to the roughening phenomenon,
it is necessary that the dominant mechanism be isolated among the less
significant factors. It was done by decomposing a measured profile into low
and high spatial frequency components, and then comparing the surface
roughness calculated for each component with that of the original profile.
An example showing the decomposed low frequency component(Fig.6b),
and the high frequency component(Fig.6c) is also given in Fig.6. Exper-
imental evidence suggests that both the horizontal and vertical surface
roughness phenomena o, T for the low frequency component are almost
the same as that for the actual measured profile . Thus we may conclude
that the low frequency component is the dominant factor.

Specimens with grain sizes of the order of millimeter were used to study
the plastically induced relative grain rotation. The grain boundaries in
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each specimen's surface was marked and the specimen was then polished
to almost mirror finish. The relative grain rotation was measured by using
a set-up which consists of a laser, a partial mirror, a translation stage and
an observation screen as schematically shown in Fig.7. The laser beam was
directed to a grain on the specimen surface and the specular reflection point
was marked on the observation plane. The specimen was then translated
such that the neighboring grain was now under illumination and the specu-
lar reflection point from this grain was then determined. The relative angle
between the two grains was determined by the distance between the two
marks and the distance between the observation plane and the specimen.
The relative grain rotating angle at each plastic deformation level was the
average of rotating angles from ten pairs of grains. Figure 8 shows the
average grain rotation 0 versus true plastic strain for specimens with four
different grain sizes. They all appear to increase linearly with plastic strain.

Based on the experimental evidence mentioned above, a tentative ex-
planation to the plastically induced roughening may be given as follows.
For 0 < Et < 3.5%: At the begining the surface polishing process has
rendered all the grains on a specimen surface to be approximately on a
plane. As a result, the initial rms roughness o, is small and the correlation
length T is large. As the plastic deformation increases, slip bands come
into being and grains begin to rotate with respect to each other. Because
plastic deformation is small, some grains tend to be bonded together to
rotate as a group with respect to the other grains or grain groups. With
the progression of plastic deformation less and less grains remain bonded
resulting in the correlation length T becoming smaller and smaller. The
combined effect of change in correlation length and grain rotation results
in a increase of o, when Et is increased.

For 3.5% < Et < 18%: At this stage, almost all the grains have been in-
volved in the relative rotation with their neighboring grains. This results in
a slower generation rate of new low frequency profile components rendering
the correlation length T being saturated. The relative grain rotation still
increases linearly with respect to plastic stain making the surface vertical
roughness oa increase approximately linearly with plastic strain.

Conclusion
Based on the evidence we have gathered for the material studied we may
conclude that: 1. surface vertical roughness increases linearly with re-
spect to plastic strain; that 2. surface horizontal correlation length de-
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creases with respect to plastic strain- that 3. surface vertical roughness
is independent of material property, stress mode, but dependent on strain
path; that 4. surface horizontal correlation length is dependent of material
property; that 5. plastic deformation roughens surface by introducing slip
bands within grains and relative rotation and sliding between grains; that
6. the low frequency component of a surface profile contributes dominantly
to surface roughness parameters o, and T; that 7. the horizontal surface
roughness parameter in terms of correlation length is proportional to a
material's average grain size and it becomes saturated at a certain plastic
deformation; that 8. relative rotation between grains increases linearly to
the amount of plastic deformation; and that 9. surface vertical rms rough-
ness is mainly due to grain rotation.
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INTRODUCTION

Poorly lubricated bearings exposed to rolling and sliding contact are
subjected to localized frictional heating caused by relative slip between
the two sliding surfaces. This heating leads to a rise in temperature,
thermal stresses and changes in the elastic, plastic strength and thermo-
physical properties of the material. The changes in the properties, in turn,
alter the stress state, the displacement field and the temperature rise itself.
Thus the problem of rolling-sliding contact is a coupled one and extremely
difficult to be studied analytically. To effectively design components such
as the roller bearings there is a need for realistic characterization of the
deformations, plastic strain distributions and residual stresses in the
material.

A large amount of literature in this area deals with theoretical
treatments and is mostly confined to the elastic case. The mechanics of
elasto-plastic contact with friction, but in the absence of heating, have
been examined [12,13]. A bulk of the existing literature deals with surface
limited analyses [2,3, 10] and the contact of rough surfaces, such as flash
temperatures [7,8,14], the transient temperatures and thermal
deformations due to frictional heating and asperity contact [1,17].
Newman [18] developed an elasto-plastic finite element model to study
the stress fields in welded plates. Muro et al. [16] have studied the residual
stresses in roller bearings by X-ray measurements. Kulkarni et al. have
put forward a finite element model incorporating the effects of frictional
heating for elastic-perfectly plastic material behavior. But it has been
shown that material behavior in repeated rolling contacts is not perfectly
plastic but comes close to elastic-linear-kinematic-hardening-plastic
(ELKP) behavior.

This paper extends the coupled mechanical and thermal loading
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finite element analysis of line contact, carried out by Kulkarni, to a
kinematically hardening material with temperature dependent strength
properties.

ANALYTICAL PROCEDURE

The 2-D finite element mesh employed in the present study consists
of 285 elements and 919 nodes (see Fig. 1). Eight noded isoparametric
plane strain elements, which are biquadratic in displacement and linear in
temperature are used. The mesh is 24w long (in the circumferential or x-
direction) and 12w deep (in the radial or y-direction), where w is the half
contact width. The z- direction (out of plane) is the axial direction. The

p, q /hVV

A .... _B

Figure 1. Finite element mesh used for the 2-dimensional
calculations accounting for rolling-plus-sliding with frictional heat
generation and temperature dependent material properties.
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mesh generation and analysis has been carried out using the finite element
code 'ABAQUS'.

To simulate frictional rolling contact a thermo-mechanical load is
repeatedly translated across the free surface, AB (see Fig. 1). The
mechanical loading is a combination of a normal Hertzian pressure
distribution, p, a tangential surface component, t and thermal load, q,
given by,

p = p[l- (X2/W2 )]1/2

t = tpo[1- (x2/w 2)]1 /2

q = 0.5poVIA[1- (x2/w 2)]1 /2

Where V is the sliding velocity, 1 is the coefficient of friction, P0 is the
peak normal pressure and x is the coordinate measured from the center
of the pressure distribution. The temperature dependent strength and
thermo-physical properties namely, elastic modulus, E, kinematic yield
strength, ak, Plastic modulus, M, coefficient of thermal expansion, a,
thermal conductivity, K and specific heat CP are listed in Table 1 [9,11,19].
Side AB loses heat by convection. The film coefficient h is selected to be
150 W/mý°C. The present calculations have been performed for po/kk=

Table 1. Temperature dependence of strength and thermo-physical
properties.

Temp E Uk M KCP

(°C) (GPa) (GPa) (GPa) x106/oC W/m KJ/Kg°K

0.0 207.0 1.05 188.0 13.05 20.0 450.0

25.0 205.0 1.01 185.0 13.89 21.6 458.0

93.3 201.0 0.96 180.3 14.22 22.1 626.0

204.4 196.0 0.91 175.3 15.30 22.9 640.0

315.6 190.0 0.77 169.4 16.20 23.4 690.0

426.7 183.3 0.75 162.9 16.83 24.0 745.0

537.8 170.4 0.53 150.7 17.46 24.8 798.0
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5.0 (kk = ok/V3) and half contact width w = 0.5 mm (assumed constant with
temperature).

The non-surface boundaries are displaced elastically to make the
mesh behave as a semi-infinite half space. The normal load is applied as
an elliptical pressure distribution whereas the traction load is applied as
concentrated consistent nodal forces. The applied Hertzian pressure
distribution and the traction loads are discretized into several concentrated
forces. Elastic displacements due to each of these forces are calculated
at the non-surface boundary nodes using closed form solutions and
superposed. For the bottom surface DC, both the X and Y displacements
are prescribed, while for sides AD and BC only X displacements are
prescribed.

It is seen that thermal gradients are insignificant below a depth of
2w and hence the temperatures at the bottom surface of the mesh are set
equal to the ambient value. For the sides AD and BC the temperatures
are not fixed but thermal gradients are set equal to zero.

The heat fraction generated due to inelastic strains has not been
accounted for. However, this should not create any significant error
because the amount of cyclic plasticity for ELKP materials has been found
to be very small. Also Kumar et al. (1988) have calculated the total plastic
energy dissipated during rolling sliding (p0/k=6, y =0.2) for 52100 steel
using finite element calculations and have estimated a 0.6°C rise in
temperature per contact, which is insignificant considering the 100'C rise
in temperature per pass for this study.

Three different cases have been studied:

1. Rolling and Sliding without any heat effects. Normal pressure p
and traction t are applied.

2. Rolling, sliding and frictional heat generation with temperature
independent material and thermo-physical properties. Thermal flux q,
along with mechanical loads p and t, is applied.

3. Rolling, Sliding and frictional heat generation with temperature
dependent material and thermo-physical properties. Mechanical loads p
and t and thermal flux q are applied.

In each case two passes were made. The loads are translated from
one end of the mesh to the other to complete one pass. The same
properties are used for cases one and two; these are the same as the initial
properties (at 0°C) in case three. The three cases are compared to study
the effects of frictional heating and temperature dependent properties.
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RESULTS

Figures. 2 and 3 show the normalized circumferential and axial
residual stresses (after unloading followed by cooling to ambient
temperature) as a function of normalized depth, y/w. For cases 2 and 3,
both the circumferential and axial residual stresses are tensile to a depth
of about 0.5w and compressive after that. For case 1, circumferential
residual stresses are slightly tensile near the surface, but axial residual
stresses are compressive throughout. For all the three cases, the residual
stresses are not very different below a depth of 1.5w. Figures. 4, 5 and
6 illustrate the magnitude of cyclic plasticity during pass 2 for the three
cases. These show the variation of the equivalent plastic strain amplitude,
AeP,/2, shear plastic strain range, A7• and the radial plastic strain
range, AEP. respectively. The location of peak plastic activity shifts from
a depth of 0.7 y/w in case 1 to 0.3 y/w in cases 2 and 3. Fig. 7 shows the
residual equivalent plastic strains for the three cases.

0.15.

0.10-
Legend

O CASE_3

E CASE 2

0.05- 0 CASE I

-0.05.

-0.105 o
0 1 2 3 4

Y/w
Figure 2. Normalized circumferential residual stresses as a

function of normalized depth, y/w, for the three cases.
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Figure 3. Normalized axial residual stresses as a function of
normalized depth.
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Figure 4. Equivalent plastic strain amplitude variation with depth
for a point located at the center of the mesh.
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Figure 5. Variation of plastic shear strain range, A-yPxy, with depth
at the center of the mesh.
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Figure 6. Variation of plastic radial strain range, AEP•, with

depth at the center of the mesh.
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Figure 7. Residual plastic equivalent strain (eP,) as a function of
depth at the center of the mesh.

Figures. 8 and 9 show the surface temperatures half way through
the first and second passes, for cases 2 and 3, respectively. The

500 1

400. Legend

300.

200-

t0.

-2 -10 1 2

x/w
Figure 8. Distribution of surface temperature for case 2, halfway

through the pass, for different passes.
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Figure 9. Distribution of surface temperature for case 3, halfway
through the pass, for different passes.

temperature distribution is asymmetric about x/w=0.0. The highest
temperature attained is higher in case 2 than case 3. This is because the
heat influx remains the same in the two cases but thermal conductivity and
specific heat increase in case 3 with increase in temperature, thereby
reducing the peak temperature. Fig. 10 shows the temperature contours in
a section of the mesh, halfway through the third pass, for case 3. It is seen
that the thermal gradients are steep near the surface but die out quickly
with depth.

Figure 11 shows the cyclic stress strain hysteresis loops for pass 2
for case 2. The loop is found to be closed indicating fully reversed
plasticity.

DISCUSSION

The analyses reveal that the incorporation of ELKP material
properties greatly reduces the plastic strains generated, relative to those
expected for perfect plasticity. The peak residual equivalent plastic strain

(,Pq) obtained here for case 2: 2.5e-0 p/=.,•01,i /5ho h
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Figure 10. Temperature contours half way through the third pass,
in a section of the mesh, for case 3.
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Figure 11. Hysteresis loop, shear stress versus shear strain, for
second pass of case 2.
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value obtained by Kulkarni et al. (1989): 6.OE-02 (po/k=5.0, t=0.1), for
elastic perfectly plastic behavior for the same conditions. From Fig. 7 it
can be seen that frictional heating and temperature dependence of
properties has a large effect on the residual strains. The peak equivalent
plastic strain increases by 10 percent from case 1 to case 2 and by 30
percent from case 1 to case 3. It should be noted that the peak strain
occurs nearer to the surface in cases 2 and 3, as compared to case 1.
Figures 4, 5 and 6 indicate that a large difference in cyclic plasticity is
obtained due to heating and temperature dependent properties. The peak
equivalent plastic strain amplitude increases 40 percent from case 1 to
case 2. Important changes in plasticity occur very near the surface.
Equivalent plastic strain amplitude changes from zero in case 1 to 6.0e-04
in case 3, which is very significant considering the peak value of 10.0e-04.
This high amount of plasticity near the surface could be the reason for
formation of near surface cracks.

The normalized residual stresses are found to be tensile near the
surface, consistent with the findings of Kulkarni et al. (finite element
model, 1988) and Muro et al. (X-ray measurements, 1973). But the
magnitudes are far less than those obtained by Kulkarni et al. (elastic
perfectly plastic material properties) who reported a peak normalized
circumferential residual stress of 1.7 compared to 0.14 for case 3 in this
study (ELKP properties). The difference is clearly due to the different
material property representations. The residual stresses in cases 2 and 3
are found to be highly tensile and less compressive as compared to case
1.

The ratio of peak tensile stress to peak compressive stress is close
to 2.5 for circumferential residual stresses and 2.0 for axial residual
stresses for cases 2 and 3. A value of 2.0 has been reported by Muro et al.
(1973) determined by X-ray measurements (see Figs. 2 and 3). The peak
circumferential residual stresses are found to be about 1.4 times the peak
axial residual stresses for case 3.

There is an appreciable difference in the magnitude of the residual
stresses for cases 2 and 3. The magnitudes are increased by 5 to 10
percent due to the introduction of temperature dependent properties (Figs.
2 and 3). This is as expected, because the material becomes softer with
increase in temperature and hence deforms more under the same amount
of load, leading to higher residual stresses.

Also as seen in Figs. 2 and 3, the residual stresses for all three
cases are almost the same at a depth greater than 1.5 w. This is because
the temperature gradients vanish at a depth of 1.5 w and the temperature
is close to ambient below that depth. This steep temperature gradient
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produces very high compressive stresses. This, followed by non uniform
thermal contraction during cooling, appears to be the reason for the
residual tensile stresses. These transient residual tensions (due to
translating thermo-mechanical loads) suggest a possible mechanism for
thermo-cracking.

CONCLUSION

1. A transient translating elasto-plastic thermo-mechanical finite
element model is used to study 2-D frictional rolling plus sliding contact
with kinematically hardening and temperature dependent material
properties. Residual stresses, temperature and plastic strain distributions
are evaluated.

2. ELKP material properties greatly reduce the plastic strains and
residual stresses generated, as compared to elastic-perfectly plastic
material properties.

3. Incorporating the frictional heating makes the residual stresses
highly tensile and less compressive. Residual tensile stresses are the
result of compressive thermal stresses due to the steep temperature
gradients followed by the non uniform thermal contraction (during
cooling). However they do not effect the residual plastic strains
significantly.

4. The incorporation of temperature dependent material properties
highly increases the cyclic plasticity and also increases the residual stresses.
This increase in plasticity is drastic very near the surface and could be a
possible mechanism for formation of near surface cracks.

5. The residual tension and the transient tension (associated with
the translating thermo-mechanical loads) may be a possible source of
thermal cracking.

Several approximations have been made-

1. Arbitrarily selected heat transfer coefficient h.
2. No heat generation due to inelastic straining.
3. Representation of the bearing material as a continuum (not

considering the metallurgical transformations accompanying the
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high temperatures).
4. Results have been obtained in the transient state, i.e., before a

steady state temperature was reached. It should be pointed out
that the results of Kulkarni [15] with which comparisons are
made in this paper, were also reported before the steady state
was reached.

The convection coefficient for forced convection, h(T), is an
important thermal parameter. It varies from 10 to more than 10r W/m 2°K
and depends on geometry, flow conditions and physical properties. An
attempt at a boundary layer analysis to solve the heat transfer problem
and define h(T) for specific contact situations is recommended.
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Introduction

Plastic strain induced anisotropy is of great interest in the
formulation of constitutive equations for metals and alloys. This
paper presents experiments depicting the response of an Al alloy
to a nonproportional, polygonal loading path in strain space.

Experimental Arrangements

A servohydraulic, computer-controlled MTS axial-torsion testing
machine with a biaxial clip-on extensometer is used to test
thin-walled tubes of an Al-Mg alloy under nonproportional
straining. Digital data acquisition is used to record axial and
shear stress as well as axial and shear strain. The influence of
three levels of prestrain (0, 1 and 12%) on the subsequent stress
response to a regular, 16-sided, polygonal strain path is
investigated. At each corner of the polygon, yield surface
probings were performed in most of the tests before straining
continued to the next corner. Straining and yield surface
probing were done under computer control with no human
interaction. The alloy was donated by ALCOA and has a
tensile ductility of about 16%.

Experimental Results

Figure 1 depicts the polygonal strain path imposed on the
specimens (the square path following the polygonal path and
identified by the numbers 19 through 26 was not used for the
results reported in this paper). The axial prestrain level X was
changed from specimen to specimen and amounted to zero, to
1% and to 12%. After prestraining the polygonal strain path
was imposed. At each station, identified by numbers 1 through
18 yield surface probing was conducted before straining continued
to the next station. Details can be found in Cheng [1].

Figure 2 shows the stress response to the polygonal strain path
at three levels of prestrain. With an increase of prestrain
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Figure 1. Polygonal strain path imposed on specimens.
Numbers 1-18 indicate the stations at which
yield surface probing was performed. x is the
tensile prestrain level (0 for ALDI, 1% for
ALG4, 12% for ALH2).
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Figure 2. Stress responses to polygonal strain path (70,

90, 150 indicate the stress level reached at the
end of prestraining). The nearly radial- stress
paths correspond to elastic behavior; inelastic
behavior is predominant after the bends when
the stress paths are nearly circumferential.
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(ALD1-0%, ALG4-1%, ALH2-12%) the size of the stress
response increases. For each specimen the response is akin to a
spiral with an initial radial path. (During yield surface probing
the stress pertaining to the same strain drops due to small
accumulated inelastic strains and due to time dependent effects
such as relaxation, see Cheng and Krempl [2] and Cheng [1].
As a consequence the stress at the beginning and at the end of
the yield surface probing is different.) The initial radial path is
associated with elastic deformation and inelastic deformation sets
in at the pronounced bends. For zero prestrain, specimen
ALD1, the growth of the radius of the spiral is initially rapid
but levels off as straining continues. There is less of a radial
growth for the stress path of specimen ALG4 and its stress
response finally coincides with that of specimen ALD1. The
stress responses for inelastic deformation of specimen ALH2, 12%
prestrain, are nearly on a circle with radius 150 MPa. The
tensile prestraining has diminished the capacity for hardening,
taken here as an increase of the radius of the stress response.
The final radius of specimen ALH2 is larger than those of the
other two specimens which is taken to be an indication of
specimen-to-specimen variation. The ultimate engineering tensile
strength of this material is approximately 150 MPa. It is seen
that the effect of tensile prestraining is primarily to increase the
initial radius and to decrease the rate of radius increase under
subsequent straining.

It can be argued that the response depicted in Figure 2 might
be influenced by yield surface probing and the attendant stress
drop. Figure 3 compares the response of specimen ALG4 with
that of specimen ALF7 which was only subjected to continuous
loading until station 13 when yield surface probing commenced.
It is obvious that the response associated with inelastic
deformation is unaltered by yield surface probing.

Returning to the results of Figure 2 it is reasonable to suggest
that the material hardens until the stress response reaches a
radius equivalent to the ultimate tensile strength of the material.
The effect of prestraining is primarily an increase of the initial
radius of the spiral. Ultimately the growth levels off at the
same radius as for the specimen without prestrain. It seems
that an ultimate surface with a radius equal to the ultimate
strength can be postulated. For the present tests at least, this
surface is unaffected by prior deformation.

When the effective stresses pertaining to the corners of the
polygon are plotted vs. accumulated inelastic strain, an effective
stress-strain curve is obtained within a reasonable scatter, see
Figure 4. It contains the results of seven specimens including a
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tensile test, ALG2 and a torsion test, ALH3. The strain path
for specimen ALF7 is identical to that of specimen ALG4. For
specimen ALG1 the one percent prestrain was followed by the
polygonal strain path which in this case was traversed in
dock-wise direction. It is seen that the ultimate responses to
the polygonal strain path lie on a nearly unique effective
stress-accumulated inelastic strain graph. The transient responses
are generally not included. They deviate from the effective
stress-strain diagram as seen for the responses of stations 8, 13
and 16 of specimen ALH2. It is seen that only the final points
of the stress response are on the curve.

Discussion

The present results suggest that after sufficient inelastic straining
the response of this material to the employed nonproportional
loading paths is independent of prior history. Also an ultimate
surface with center at the origin appears to exist. Its radius is
independent of prior history and equal to the ultimate
engineering strength of the material. The transient effects have
been investigated, Cheng and Krempl [2], and have been used in
formulating constitutive laws for deformation induced anisotropy,
see Lee and Suh [3].
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A REEXAMINATION OF THE PLASTIC FLOW CRITERION FOR COPPER

Norris J. Huffington, Jr.

U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066

SUMMARY: It was found impossible to reconcile discrepancies
between uniaxial and torsion test data for copper within the
framework of the von Mises yield function; use of a more general
function employing both the second and third invariants of the
stress deviator was studied and certain limitations on use of such
functions are discussed.

INTRODUCTION

While finite element hydrocodes can predict the contours of finitely
deforming metals with reasonable accuracy, their ability to determine local
strain and stress states leading to catastrophic failure by such mechanisms
as adiabatic shear banding and void openings leaves much to be desired.
An improvement in the ability to compute such local state histories would
significantly enhance the design of warheads and predictions of armor
penetration and behind-armor debris formation. In recognition that better
material characterization was an essential ingredient of the desired
improvement, a joint BRL/MTL program entitled Advanced Constitutive
Models was initiated several years ago. This paper reports on one facet of
this investigation.

At BRL, it was decided to employ the DYNA3D hydrocode [1] in
connection with this study. This is a Lagrangian finite element computer
program currently in widespread use which employs an adequate finite
deformation formulation and features a choice of approximately 30
constitutive models. However, only a few of these models are suitable for
the large strain, low rate applications to be discussed in sequel. These

*This term is used to identify a mathematical function or algorithm which determines stress
tensor components from the current rate-of-deformation components, some past history data,
and possibly temperature through an incremental plasticity time marching process.
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models generally employ the von Mises yield condition J 2 - k2 = 0, where
J 2 is the second invariant of the stress deviator tensor, as the plastic
potential function and use the Jaumann stress rate to account for the rigid
body rotation of elements.

QUASI-STATIC MATERIAL PROPERTIES

For an evaluation of material constitutive behavior, it is necessary to
have test data for the specific lot of material to be characterized. It was
decided that this investigation would commence with a study of OFHC
copper and MTL was tasked to perform the necessary experimentation.
Dr. Tusit Weerasooriya has reported [3] data from two types of quasi-static
(isothermal) tests on annealed copper:

(1) Uniaxial compression stress-strain curves for the range -1.30 < E < 0.

(2) Torsional shear stress-strain data from twist tests on modified
Lindholm-type thin-walled tubular specimens for the range 0 < E < 1.4
(tensor) shear strain. These tests were performed for two conditions
of axial restraint: (a) almost total axial restraint in which case the
induced axial force was recorded and (b) no applied axial restraint
where the axial displacement was monitored.

Also, Dr. Weerasooriya provided the author a curve for reversed loading of
a torsion specimen which permitted an assessment of the Bauschinger
effect for this material.

CONSTITUTIVE MODELING CONSIDERATIONS

The compression test data cited above reveal that the stress-strain
curve for annealed copper is nonlinear over the entire range, the elastic
portion being of negligible size. For a curve of this form, a bilinear
representation (such as DYNA3D Material 3) is unsatisfactory. Material 10
of the DYNA code, which permits input of up to 16 stress-strain points and
interpolates linearly for intermediate values, is more appropriate but only
treats isotropic hardening.

*The exception is the model of D. Bamrnmann [2] as incorporated by M. Chiesa of Sandia

Livermore which is a multi-parameter micromechanically-based constitutive system which uses
the Green-Naghdi stress rate.

510



The Lindholm-type torsion specimen does not result in a homogeneous
state of stress in the thin-walled test section; also, the shearing strain and
plastic deformation extend into the transition section. For this reason,
various investigators have resorted to 3-D finite element modeling of the
whole specimen (using an assumed constitutive model) to provide a basis
for interpretation of test data. Lipkin et al. [4] reported a DYNA3D calcula-
tion using an earlier version of the Bammann constitutive model in which a
twist rate high enough to predict adiabatic shear banding was used. The
present author performed a DYNA3D analysis for the MTL geometry using
Material 3 and 11und this geometry was prone to premature torsional
buckling. It was recommended that a thicker wall be used since an inter-
pretive analysis would be required in any event. Dr. C. S. White [5] report-
ed an ABAQUS analysis of a geometric configuration closely corresponding
to that used by Weerasooriya and has concluded that "about 78% of the
twist that is applied at the grips actually goes into the deformation in the
gauge section." Although White's calculations were made for a different
material, it was decided to multiply Weerasooriya's shear strain data by a
factor of 0.78.

USE OF EXPERIMENTAL DATA; DISCREPANCIES

If the compression test data are used as input to DYNA3D Material 10
and a calculation is made for an element constrained to deform uniaxially
with no lateral restraints, the code predictions are (naturally) in excellent
agreement with the experimental values. (It is necessary to choose an
equation-of-state which permits specifying the pressure to be proportional to
the volumetric strain {proportionality constant = bulk modulus), use the
hourglass viscosity type 3 {Flanagan-Belytschko [6] with exact volume
integration), and to set the Gruneisen coefficient = 0 for an isothermal
calculation.) Similarly, when torsion test data are inserted in DYNA3D
Material 10 and a simple shear problem is run for an element, there is no
discrepancy.

However, when compression test data are used in Material 10 to predict
the stresses in an element subjected to increasing simple shear the result
shown in Figure 1 is obtained, where the overprediction of the shear stress
Yzx is as great as 30%. Not surprisingly, the converse is also true: use of

the torsion test data as input for a uniaxial compression calculation results
in a significant underprediction of the axial stress ax as shown in Figure 2.*

This phenomenon is no new discovery and has been discussed in the
literature by Prager [7], Drucker [8], Edelman and Drucker [9], and many
others. The basic problem is that use of the von Mises condition as

* While strain data input to the DYNA3D code is in terms of logarithmic strains, the

abscissas of Figures 1 and 2 are in terms of engineering strain tensor components.
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Figure 1. Simple Shear Calculation (Geometric
Constraints, Material Type 10).

a loading function for work hardening materials does not closely describe
the plastic deformation of many materials (even though it is widely
employed for this purpose in most currently used hydrocodes). According
to the authors just cited, the problem can be resolved by use of a loading
function depending on both the second and third invariants of the stress
deviation; i.e., a (J2, J3) theory. Although such theories seem to have fallen
into disuse, perhaps this approach should be considered for applications
involving large strains, where the discrepancies are greatest.

IMPLEMENTATION OF A (J 2, J3) THEORY

It was decided to employ the function quoted by Malvern [10]:
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f(J 2 ,J3) -- j l_ c(J 3) 2. -k2 = 0(J2)3  I (1)

whereIJ2 = (S2 + S•2 + S23) + + S2 + S2 (S2 + S2 + S•) (2)

J3 = S11 S22 S 33 + 2S 12 s23 S31 23 - S22 31 - S33 12

= S1 S2 S3 (3)

k = yield stress in pure shear, variable for a work hardening
material
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c = nondimensional parameter to be adjusted to provide match

of post yield flow data

Sij = deviatoric stress components

Sk = principal deviatoric stresses

Installation of Equation (1) as the load function in DYNA3D was easily
accomplished since current values of all required quantities are available in
the stress evaluation subroutine. Because J3 vanishes for pure shear, it is
attractive to insert the tabular data from the shear tests in Material 10 and
then determine the parameter c to provide correspondence to the
compression test data for uniaxial stress calculations. For the present
application, the peak stress was employed because the uniaxial
stress-strain curve appears to level off at this value and the interest is in
large strain plasticity. Of course, other matching criteria could be adopted
for other strain ranges. Only a few trials were required to obtain c = 2.83;
this value was used in DYNA3D to obtain the solid curves displayed in
Figures 1 and 2.

GEOMETRIC REPRESENTATION

It is instructive to view the (J2, J3 ) yield function in principal stress
space, where it may be recalled that the von Mises function is represented
by a circular cylinder coaxial with the hydrostatic line a, = C2 = a3. To
achieve this, the following orthogonal coordinate transformation was made:

+1 " 2 - 3

T1  _ T2  T3

2 =--- +

03= - +- (4)

With this transformation, the r3 axis coincides with the hydrostatic line and
the ri axis is aligned with the projection of the a3 axis on the deviatoric
plane a• + 02 + 03 = 0. Using Equations (4), one obtains

= 1 2 + (5)
52 14
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3

and, substituting these values in Equation (1), there results

2 C + ),2 21t 2,T1C
27t 2 {(81 -36c)1-54k 2} + { (81 + 24~4-18

+ (27-4c)tc6-54k2 1 = 0 (7)

which defines the contour of the yield function in the tc1, 't2-plane.

As noted by Hill [11], it is only necessary to compute coordinates for a
300 segment of this plane, the remainder of the locus being determined by

the symmetry constraints for an isotropic material. This locus for c = 2.83
is displayed in Figure 3 as a solid line. It is seen that the (J2, J 3) surface is
a fluted cylinder with the von Mises cylinder inscribed. For Material 10
which provides only for isotropic hardening, these surfaces would expand
uniformly as plastic deformation progresses. It should be mentioned that
DYNA3D presently uses only the Krieg-Key radial return algorithm [12] to
return the stress state to the updated yield surface each cycle. This
algorithm is clearly more appropriate for the J 2 surface than for the (J2, J 3)
function. However, it is still attractive due to its simplicity and the
assurance that the yield surface will be intersected, although for the latter it
corresponds to a nonassociated flow rule. A "normal return" algorithm
would seem preferable or perhaps the recently published Nemat-Nasser
algorithm [13], but either of these would require more extensive calculations
per cycle. These matters may be academic in view of the following
discussion.

MATERIAL STABILITY, CONVEXITY REQUIREMENTS

It is clear from inspection that the c = 2.83 loading function in Figure 3
violates the requirement that the surface be convex, as deduced by Drucker
[14,15] from his postulates for material stability. Although the author has
made a considerable number of computer runs using this value of c with no
evidence of instability, these cases were not designed to test all types of
loading and unloading. Thus, it is appropriate to ask: Can any (J2, J3) load
function satisfy the convexity requirement? The answer is yes and the
limitation on c is determined by evaluating the curvature of the load function
at its point of tangency to the von Mises circle. Thus, at t1 = 0,
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1-c

=(8)

This happens to be the exact curvature since - = 0 at this location.
dt1i
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Therefore, the transition in sign of the curvature occurs at c = 0.75 and
the load function is everywhere convex for this or lesser values of c. The
form of the load function for c = 0.75 is plotted in the upper sextant of
Figure 3. Unfortunately, for this value of c, the percentage difference
between the maximum and minimum radii of the load function is only about
6%. It can now be seen that the greatest percentage difference in radii
consistent with convexity requires a load function in the form of a hexagon
circumscribed about the von Mises circle, as shown in the upper portion of
Figure 3. Even for this form of yield function (with its attendant analytical
complexities), the percentage difference in radii is only 15.5%, about half of
what is needed to reconcile the discrepancies associated with experimental
data.

CONCLUDING REMARKS

It is realized that other investigators [16,17,3] have treated the subject
matter of this paper by micromechanical modeling and have attributed the
cited discrepancies to formation of texture. However, the end objective of
such research does not appear to be the identification of load functions
appropriate to classical plasticity.

This author is convinced that material behavior must be modeled within
the framework of continuum mechanics if efficient, large-scale computations
are to yield valid results for engineering purposes. While the study reported
herein may seem inconclusive, it is believed that use of a nonconvex
loading function may be permissible for certain classes of problems,
especially if the computer program is modified to test on the sign of the
plastic work increment in each element and to terminate the calculations if
a negative work increment is predicted. It is very desirable to resolve this
matter before proceeding to studies of strain-rate effects, stress rate
models, etc., where uncertainties regarding the loading function may
obscure interpretation of other types of experimental results.

It should be mentioned that the author has added a new subroutine to a
research version of DYNA3D which includes many effects previously not
present in a single material model, specifically:

1. Finite elastoplastic straining.

2. Mixed kinematic/isotropic hardening, as recommended by
Hodge [18].

3. Arbitrary shape of uniaxial stress-strain function through input of

tabular data.
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4. Choice of stress rate formulation (Jaumann [19] or

Green-Naghdi [20,21]).

5. Choice of several equation-of-state models.

It is planned to use this tool to study finite plasticity for various proportional
and nonproportional loading paths.
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A CLASS OF CONSTITUTIVE MODELS FOR RATE-

DEPENDENT INELASTICITY IN METALS

M. M. Rashidt
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ABSTRACT

A general thermomechanical framework for the inelastic response of
solids is presented. The formalism makes use of the state-variable
concept, but differs from other such constructs in two important
ways. Restrictions on the response functions imposed by the second
law of thermodynamics are derived, and correspondence with fami-
liar concepts in metal plasticity is discussed. A special case of the
general theory, suitable for metals and involving only a single state
variable, is developed. Although this special model is necessarily
isotropic, it is capable of capturing some aspects of the Swift effect
(i.e. length changes observed in twisted tubes). A simple procedure
for experimentally determining the two hardening functions that
appear in the model is also described.

t Present address: Division 1561, Sandia National Laboratories, Albuquerque, NM 87185
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1. Introduction

A large body of literature now exists wherein the broad discipline of inelas-
tic behavior of solids is unified and rationalized by means of general constitutive
formalisms. These theoretical constructs have taken the form of both memory-
functional and state-variable formulations. In the latter approach it is assumed
that, insofar as future thermomechanical response is concerned, all relevant aspects
of a given material's previous history may be expressed through the values of a
finite collection of state variables.

In this paper, this state-variable approach is adopted, but with two important
differences in relation to what has gone before. First, the usual (but not universal)
practice of including, in the description of state, some measure of the total defor-
mation with respect to a reference configuration is not followed here. Such a
dependence is not always natural or desirable, and may be awkward to compen-
sate for in some cases. Secondly, with a view toward maintaining contact with
conventional concepts in metal inelasticity theory, the present formalism allows for
an explicit decomposition of the type F = Fe Fp of the total deformation gradient
into elastic and plastic parts, when this is appropriate to the material under con-
sideration. However, such a decomposition does not here constitute a basis for
the development; rather it has the status of an interpretive aid to which the consti-
tutive modeler may or may not appeal, according to taste. Accordingly, all of the
discussion that has appeared in the literature relating to the admissibility of such a
multiplicative decomposition has no relevance here.

The concept of state is discussed in Section 2, followed by a development of
the general constitutive framework. Appeal is made to a statement of the second
law of thermodynamics in order to establish relationships among the ther-
momechanical response functions. In Section 3, the general constitutive equations
are reduced to a simple model for rate-dependent plasticity in metals. This model
is arrived at following the introduction of a number of plausible physical assump-
tions regarding the behavior of metals, and has as a special case the classical J 2-
viscoplasticity theory.

Notation is conventional, with Cartesian tensors being employed throughout.
Where component notation is used, summation is implied by repeated indicies.

2. General Theory

2.1. concept of state

Central to the development of the general theory for inelastic solids is the
concept of state. Here, the state of a material element at time t refers to the col-
lection of all information that, once known, allows the response of the element to
be determined for times greater than t, given the applied stimuli for times greater
than t. In this intuitive definition of state, the response of a material element
refers to the time-histories of Cauchy stress T, specific entropy rI, heat flux vector
q, and specific Helmhlotz free energy W (y = F- ijO, where E is the internal
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energy per unit mass and 0 is the temperature). The stimuli are the time histories
of temperature 0, spatial temperature gradient VO, and deformation gradient F
with respect to a reference configuration at which the state is known. The consti-
tutive relations, then, become a set of rules by which the response {T, 11, q, Vt}
and the state at time t 2 of a material element may be determined, given the state at
time tl and the stimuli for times greater than tl and up to and including t 2.

It will further be assumed that the state of a material element is expressible
through the values of a finite collection of state variables, which in general may
have tensorial character. Besides allowing for the development of a quite detailed
theoretical framework, this assumption leads to enormously practical constitutive
descriptions for particular materials.

The incorporation of the concept of state into a constitutive framework is
formally distinct from the "memory-functional" approach to constitutive theory.
The memory-functional approach is exemplified by the work of Coleman [1], who
carefully laid out a general memory-functional formalism in the context of contin-
uum thermodynamics. In this approach, the response of a material element is
regarded as a (generally nonlinear) functional of the past history of stimuli. Con-
stitutive descriptions of this kind suffer from the practical difficulties of construct-
ing realistic and meaningful memory functionals, and of accounting for the fact
that the stimuli and state history in the infinite past can never be known.

In the present formulation, the state variables will be used in a slightly
different manner than they are in other, more conventional formulations. In par-
ticular, in the work of, e.g., Coleman and Gurtin [2], Rice [3], Kestin and Rice
[4], Kratochvil [5], Lubliner [6], and Valanis [7], the response of a material ele-
ment is assumed to be a function of the state (or "internal") variables and what
Lubliner [6] refers to as "external" variables. These external variables are usually
taken to be the deformation gradient, the temperature, and the temperature gra-
dient, the time histories of which are here regarded as stimuli. No distinction is
made in the present formulation between "external" variables and "state" variables,
so that if, e.g., the response depends explicitly upon the deformation gradient (as
it does in the case of thermoelasticity), then this must be explicitly provided for
by including a state variable whose value is that of the appropriate deformation
gradient. The present formulation is similar to the purely mechanical theories of
Dashner [8] and of Onat [9] in this respect. The purpose of this feature is to
remove from the constitutive relations any extraneous (and perhaps awkward)
dependence on a particular reference configuration, in accord with the conceptual
role of the constitutive relations as stated in the first paragraph of this subsection.

2.2. state evolution

The collection of state variables will be denoted by S. In what follows, it
will be convenient to work with a single, typical state variable S E S which will
be taken to be a second-rank tensor; the analogous expressions for S of other than
second rank, and for multiple state variables, may usually be written immediately.
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Before discussing the thermomechanical response itself, the issue of state-
variable evolution will be addressed. In line with the statements of the previous
subsection, and using the single state variable S as an example, the state of a
material element is regarded to evolve according to

S(t +s) = I(S(t), s; Ft(cc), Ot(a), gt(co)) , s > 0. (2.1)

In (2.1), 1 is a function of its first two arguments and a functional of its last
three, and s is any real number greater than zero. Also, Ft (a) is the time-varying
deformation gradient with respect to the configuration at time t, i.e.

Ft(c0 = F(t + ax) F--I(/) , 0 < (x:!< s ;(2.2)

and et (a) and gt (a) are defined by

et(a)=0(t+a)-0(t), gt(a)=V8t(a) , 0<z•as , (2.3)

where V represents the spatial gradient operator a / ax. (Here and throughout, the
spatial position x is not explicitly included among the arguments of functions for
brevity.) The notation of (2.1) is meant to indicate that the functional I depends
on the functions F, (a), 0, (a), and gt (a) for 0 < oa < s. It is assumed that F and 0
are continuously differentiable functions of time, so that Ft(a), 0t(a), and gt(a) are
also continuously differentiable with respect to a for all a > 0 and all t. Equation
(2.1) is essentially a mathematical statement of what is meant by the "state" of a
material element; it is similar to that employed by Dashner [8] in the context of a
purely mechanical theory.

Our aim now is to reduce the functional expression (2.1) to a rate equation
for S by introducing certain plausible assumptions. To this end, the notation
Q(a)[S(t + a)] for the transformation of S( + a) under a superposed rigid-body
rotation Q(a) is introduced. In this notation, Q(a) is a proper orthogonal rotation
tensor with Q(a) = 1 for ( < 0 (otherwise arbitrary), so that Q(a) F(t + a)
corresponds to a motion that differs from the given motion by a rigid rotation for
times greater that t. For example, if S is known to transform objectively under
superposed rigid rotations, then Q(a)[S(t + a)] = Q(a) S(t + a) QT(a). Equation
(2.1) must hold for all motions; therefore

Q(s)[S(t + s)] = Y_ (S(t), s; Q(a) Ft (a), 0, (a), Q(a) gt (cc) , s > 0 . (2.4)

Since Q(a) is arbitrary for a > 0, it may be chosen so that

Q(a)=Rit(a), 0<c<s , (2.5)

where R, arises from the polar decomposition Ft = RtUt. Equation (2.4) then
becomes

RtT(s)[S(t +s)] = I(S(t), s; Us(a), Ot(a), RtT(a) gt(a) ), s > 0. (2.6)

One method of deducing a rate equation for S from (2.6) would be to simply
take the material rate of both sides of this equation. However, it appears that
some knowledge of the functional I is required to proceed in this direction.
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Instead, attention is simply restricted to cases in which the functional Y may be
written in differential form [24]. That is, it is presumed that the value of Y for
any s > 0 may be regarded as the solution to an initial value problem in which
S(t) represents the initial value, and the last three arguments (and possibly their
rates of some order) form the "forcing functions." Clearly a very large class of
functionals may be represented in this way. Equation (2.1) may be written as an
initial value problem as follows:

D I{Fti(a), 0t(cc), gt (a), S(t +ia), a} = 0 , S(t + c) o = S(t). (2.7)

In (2.7), D, represents a continuous ordinary differential operator with respect to
at; i.e. D. is a continuous function of its arguments and their derivatives, of some
order, with respect to ca. The initial value problem (2.7) is solved, and the solu-
tion evaluated at ca = s to yield S(t + s).

The order of the rates involved in the differential operator D., may be
deduced as follows. First, D , must involve only zero- and first-order derivatives
of S(t + a) , since the single initial condition given in (2.7) must be sufficient to
yield a unique solution. The "smoothness" of the solution S(t + cc) will be deter-
mined by the order of the derivatives of the first three arguments appearing in
Dc o; e.g. if only zero- and first-order derivatives are present, then continuously
differentiable stimuli will result in a continuously differentiable S(t + a). Intui-
tively, "solids-type" behavior is associated with a response and a state that change
abruptly with abruptly changing stimuli. Accordingly, it is assumed that D,
involves only zero- and first-order derivatives with respect to ax of its first three
arguments. With very little loss in generality, then, (2.7) may be replaced by

S(t + a) = E (Ft, 0t, gt, it It, kt, S1 a), S(t + (X) o -0 = S(t). (2.8)

In (2.8), E is a continuous function of its arguments, and an overdot denotes
derivative with respect to oa.

Equation (2.8) may be transformed under superposed rigid-body motions of
the type considered in connection with (2.6) to obtain

d [RtT(oc)[S(t + a)]] = E (Ut, 0t, RTgt, Ut, O, d(RtTgt)/dc, RT[S], a), (2.9)daz
RT(a)[S(t +a)] =o = S(t) .

Finally, equation (2.9) is evaluated at ax = 0, and the facts that Ut (a = o) D(t),
Ut (a = 0) = 1, 0t (a = o) = 0, gt (a = o) = 0, and RT(a = 0) = 1 are used to obtain

0S(t) = E (D(/), 6(t), O(t), S(t)) . (2.10)

In (2.10), D denotes the symmetric part of the spatial velocity gradient L, and S
represents the left-hand side of (2.9) evaluated at ax = 0. For example, for the
case in which S transforms objectively under superposed rigid rotations (i.e.
S+ = QSQT), then

0
S =S+SW-WS, (2.11)
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where W is the antisymmetric part of L. (That R (a = 0) = W(t) is easily seen by
taking the derivative with respect to ax of (2.2) and evaluating at a = 0.) Simi-
larly, g = g - Wg.

It bears emphasis that the rate (0) is obtained as follows: first, the argument
"( )" is transformed under a superposed rigid rotation RT [see equation (2.5)],
then the material rate of the transformed quantity is taken, and finally the result is
evaluated at the instant a = 0 when Rt = 1. In the language of general tensor0

analysis on manifolds, the rate ( ) is a special case of the Lie derivative (see
Marsden and Hughes [25] for a discussion of tensor analysis on manifolds as it
relates to continuum mechanics). It is further emphasized that the particular form
of the rate ( ) [e.g. see equation (2.11)] depends on the manner in which the argu-
ment transforms under superposed rigid rotations. Indeed, the rate (0) is
equivalent to the familiar Jaumann rate only for the case in which the argument
transforms objectively under superposed rigid rotations. For tensors that transform
differently, the corresponding rate expression must be obtained by resorting to the
definition as described at the beginning of this paragraph.

Equation (2.10) is the desired rate equation for the typical state variable S.
As a further simplifying restriction, it is assumed that the dependence of E on D,
6, and 0 is linear. Even with this restriction, the resulting theory will be seen to
encompass most of the usual concepts encountered in the modeling of rate-
dependent-solid behavior. In this connection, Lubliner [6] notes that linear depen-
dence of this kind results in "reversible" behavior in a sense defined by him. In
line with the assumed linearity of E, (2.10) may be written

0o
S =A-D+ Z0+ Pg- + , (2.12)

where A, Z, P, and a are, respectively, fourth-, second-, third-, and second-rank
tensor functions of the state if S is a second-rank tensor. Of course, these tensor
functions must transform properly under superposed rigid-body rotations, con-
sistent with (2.12) and the transformation rule for S.

As mentioned in the previous subsection, the response {T, XV, 1, q} is
assumed to depend exclusively upon the state, the evolution of which is
exemplified by (2.12) for the typical state variable S. Before proceeding to
deduce restrictions on the response functions, three special state variables will be
introduced whose utility will be demonstrated subsequently. First, the absolute
temperature 0 itself may be recovered as a state variable by simply choosing

A=0, Z=I , P=0, C=0. (2.13)

(Note that Z and a are scalars in this case.) Similarly, the spatial temperature gra-
dient may be recovered as a state variable by choosing

A=0, Z-=-0, P=I, u=0, (2.14)

in which P is now a second-rank tensor. In view of (2.13) and (2.14), and the
fact that it is generally convenient to have the response depend directly on the
temperature and the temperature gradient, 0 and g will henceforth be explicitly
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included among the state variables.

The final special state variable that will be considered is a second-rank ten-
sor H, which obeys the evolution equation

0
H =DH-PH, (2.15)

which is clearly a special case of (2.12). Under superposed rigid-body rotations,
H is specified to transform according to H = QH, which can be motivated by
appeal to the primitive constitutive form (2.8). With this transformation law, it is
clear that H =H-WH, so that H+ = QH and f+ = QPQT (note that P is, in gen-
eral, a function of the state). It bears emphasis that the rate H is not of the "Jau-
mann rate" form (2.11), owing to the manner in which H transforms under super-
posed rigid rotations. The significance of H will be discussed subsequently; how-
ever, here it is mentioned that H equals the deformation gradient of the current
configuration with respect to the initial configuration if 0 is set to zero.

2.3. thermomechanical response

Attention is now focused on the task of deducing restrictions on the ther-
momechanical response {T, xV, rl, q}, which is now assumed to be a function of
H, 0, g, and any other state variables that may exist. The additional state variables
will again be exemplified by the single variable S E S. The idea is to find restric-
tions on the response functions that are demanded by the requirement that the
second law of thermodynamics must be satisfied for all possible stimuli. If one
accepts the Clausius-Duhem inequality as an adequate statement of the second
law, then the deduction of these restrictions follows a well-known procedure (see
[10]). Without indulging in a discussion of the various approaches to continuum
thermodynamics that one may take, it is here remarked that objections have been
raised to the Clausius-Duhem inequality as a basis for continuum thermodynamics
(e.g. [11]), and that alternatives have been proposed (e.g. [12] and [13]).

The Clausius-Duhem inequality may be written in the form

pv + pi10- T-D + 0-1 q-g_< 0, (2.16)

where p is the current-configuration mass density. In the present context, the pro-
cedure referred to above consists of substituting the response functions into (2.16)
and carrying out the indicated material rates with the help of (2.12) and (2.15).
The resulting inequality is then required to hold for all arbitrary and independent
choices of L, 0, and j, which could, at least in principle, be brought about by suit-
able body force and radiative heat supply fields. The resulting restrictions are as
follows:

=- , (2.17)

Tij = PK H Hjk1 + P[SýL-Akli] s (2.18)
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haL= 0, (2.19)
LSij 

+ i k 
2[-k 

1 
1gI - ik -. + gI-S a =0 . (2.20)

In (2.17)-(2.20), Cartesian components of the relevant tensors are employed for
clarity, and subscripts [ 1, and [ ]a are used to denote the symmetric and antisym-
metric parts; e.g., [Bij], = 1/2 (Bij + Bji). Expressions analogous to (2.17)-(2.20),
but for state variables of other than second tensorial rank, and for multiple state
variables, may be deduced in a similar manner.

After using (2.17)-(2.20) in the Clausius-Duhem inequality, one obtains

P-' Hkj + Sj + 0-1 qigi < 0. (2.21)

We define the dissipation rate y per unit mass by

a= Pik Hkj - -a--• .. (2.22)
a ll j S ij '

so that (2.21) becomes p- 0-1 q g Ž! 0. Manipulation of (2.22) together with
(2.18) results in the alternative expression

Yt= P- 1 Tij 3ij + -S-{[Pkt]sAijkl + [Pkl]aPijkgl - 2 [ 3ik]aSkj - Oij} . (2.23)

Now, the first law of thermodynamics (i.e. conservation of energy) may be written

pi = TijDjj + pr - qiji , (2.24)

where , is the internal energy per unit mass, and r is the radiative heat supply per
unit mass. Use of (2.23) and (2.17)-(2.20) in (2.24) results in the two alternative
statements of conservation of energy

pO1 = py + pr - qii and (2.25a)

P-1 TijDij = X + T16 + Y. (2.25b)

From (2.25a) and (2.25b), the following special forms of the energy equation,
which hold for restricted classes of processes as noted, may be deduced:

0i1 = y adiabatic (i.e. pr - qi = 0), (2.26a)

T- D = p't + py isothermal (i.e. 0 = 0), (2.26b)

0 = py + pr - qij isentropic (i.e. iý = 0). (2.26c)

Equations (2.26) lend motivation to the term "dissipation rate" for the quantity y.
(The definition of dissipation rate used here is somewhat different from that of
Coleman's [1] "internal dissipation." The motivation for introducing the definition
(2.22) is that, under certain conditions, y so-defined is analogous to the "rate of
plastic work" encountered in isothermal theories of plasticity and viscoplasticity.)
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Finally, it is noted that, if the state (and therefore the response) depends on
the temperature gradient g only through its current value (and not its past history),
then P = 0 and A, Z, and a are independent of g. In this case, it is clear from
(2.19) that xV is independent of the current value of g, and consequently that T and
il are also independent of g by (2.18) and (2.17). In this case, it is clear that y-_ 0
holds in addition to (2.21), since (2.21) must hold for g = 0. It bears mentioning
that, in most applications, it is further assumed that q -g < 0 always, so that

y>0 and q-g•<O (2.27)

hold separately.

Before closing this section, the physical significance of the state variable H
will be discussed. With reference to (2.15), and as mentioned previously, if

= = 0 then H is equal to the deformation gradient of the current configuration with
respect to the initial configuration (or the configuration at which the initial condi-
tion H = 1 applies). It is therefore immediately seen that the constitutive equations
for thermoelasticity may be recovered by stipulating that the state is given by
{H, 0, g} only, that P = 0, that H = 1 when T = 0, and finally that only q depends
on g as described in the previous paragraph.

For cases in which P # 0, 0 can be interpreted as a plastic velocity gradient
and H as an elastic deformation gradient under certain conditions. In particular,
and omitting the mathematical details, a process which takes the deformation gra-
dient F from F1 at time t, to F2 at time t 2 can be shown to approach arbitrarily
closely an elastic process when the time scale is compressed. (Loosely, the term
"elastic process" here refers to processes in which the sequence of states is
retraced if the process is followed by another process that is derived from the first
by reversing the direction of time. It is easily shown that thermoelastic materials
are capable of sustaining only elastic processes. Additionally, if the state is
independent of the history of the temperature gradient as described above, then
y = 0 at each instant during an elastic process.) In other words, the present consti-
tutive framework exhibits what many authors have called "instantaneously elastic"
response. The physical basis for this behavior is that all microscale processes
associated with departures from elastic response must necessarily proceed at finite
rates; an intuitively appealing conjecture for solids. This point is also related to
what Lubliner [6] calls "reversible behavior," as mentioned in Subsection 2.2.
Looking at (2.18), if the function xV is such that T = 0 when H = 1 and 0 = 00 (a
reference temperature) for all values of the other arguments, then the stress may
be reduced to zero by undergoing an elastic process in which the deformation gra-
dient is taken from its current value F to QTHI-F, and 0 is taken to 00, in a van-
ishingly small time interval. Here, Q is an arbitrary rotation tensor.

In metal plasticity, it has become almost standard to decompose the total
deformation gradient F into elastic and plastic parts as F = Fe FP, obtained by ima-
gining an "instantaneous elastic unloading" from the current configuration at each
instant. Typically, the stress is then assumed to depend only upon Fe. Much dis-
cussion has appeared in the literature concerning the applicability and propriety of
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such a multiplicative decomposition (see, e.g., [14] and [15]). Here the view is
taken that the decomposition F = FeFP should not play the part of a primitive con-
cept, or starting point, of a constitutive theory; rather it should serve only as an
interpretive aid in existing theoretical frameworks. In other words, if F = FeFP is
applicable to a particular material, then it should be possible to execute an unload-
ing at any instant to zero stress using the material model, and thereby interpret
some of the state variables appearing in the model in terms of elastic and plastic
deformation gradients. With reference to the previous paragraph, it is clear that
the tensor HQ(t) (Q(t) an arbitrary, time-varying rotation tensor), may be inter-
preted as an elastic deformation gradient if the stated condition is met. Accord-
ingly, P - HQQTH-1 may be interpreted as a "plastic velocity gradient." On the
other hand, if V is such that H = 1 and 0 = 00 does not imply T = 0 for all values
of the other state variables, then the interpretation of HQ(t) as an "elastic deforma-
tion gradient" looses some of its utility. This may be the case, for example, in
metals that exhibit a strong Bauschinger effect, and in some kinds of polymers.
In such cases, however, it may still be useful to consider "fast" processes
(although perhaps not involving unloading to zero stress) for the purpose of
assigning a physical interpretation to H. These issues will be addressed in a
detailed manner in a forthcoming article.

Before proceeding to the specific example of the next section, some further
comments are made regarding the relation between the present formulation and
those based on F = Fe FP. In formulating plasticity theories based on a multiplica-
tive decomposition of the total deformation gradient, many authors have appealed
to well-established concepts of plastic flow in metallic single crystals for motiva-
tion. In metallic single crystals, there exists a readily identifiable substructure, or
lattice, that may be said to distort elastically, and through which the material may
be said to flow plastically. Typically, developments of the theory of single crystal
plasticity produce a rate expression for stress that involves stress rate corotational
with the lattice. At first glance, it appears that the present framework, and in par-
ticular (2.15), is incapable of representing single crystal behavior since the rate (0)
involves the total spin W. This, however, is not the case. Indeed, a properly
invariant function Ji may be chosen so that the theory of single crystal plasticity is
recovered. Correspondence between the resulting theory and the familiar concepts
of single crystal behavior may then be made by performing instantaneous unload-
ings using the constitutive equations themselves, as discussed above.

3. An Application: Isotropic Viscoplasticity

The above-described constitutive framework may be specialized to describe a
very large range of inelastic behavior in solids, including virtually all of the fami-
liar concepts of isotropic and anisotropic viscoplasticity (including crystal visco-
plasticity), and much of nonlinear viscoelasticity. Indeed, corresponding models
for rate-independent plasticity, and for linearly viscous, fluids-type behavior, may
be recovered by applying appropriate limiting processes to suitable models for
viscoplasticity. In this section, a specialization of the general theory presented in
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Section 2 will be considered, in which only a single scalar state variable exists in
addition to H, 0, and g. This model is necessarily isotropic, and includes the
usual J 2-viscoplasticity theory as a special case. However, it will be shown that
some types of physically relevant behavior not predicted by J 2-viscoplasticity
theory can be recovered as well.

Consider the theory of Section 2, with the state specified by {H, 0, g, oa},
where ax is a scalar state variable. Focusing on the mechanical response, our aim
is to construct the function P and the evolution equation for a in accord with a set
of simple, plausible assumptions that are representative of the behavior of metals.
First, it is assumed that the conditions leading up to (2.27) are met, so that (2.27)
holds. Next, it is assumed that the Helmholtz free energy V is independent of a.
This is consistent with the notion that ax is a hardening parameter whose change
leaves the crystalline lattice, and therefore the material's ability to store elastic
strain energy, essentially unchanged. According to (2.23) and (2.18), then, the
dissipation rate is

Y= p-1 T" , (3.1)

and the Cauchy stress is given by

T~p~T M (3.2)

In what follows, it will be assumed that the "plastic deformation" is volume-
preserving. In anticipation of this, xV is written as V = p W(H, 0), from which it
can be shown that

T = J-1 -WH . (3.3)

In (3.3), J = det F = det H [see equation (3.6)], where F is the total deformation
gradient.

In view of (3.3) and the invariance requirements on W(H, 0) and P(H, 0, a),
the function P(H, 0, a) can always be written as a function of T, 0, and a with
mild restrictions on W. Since both P and T transform objectively under super-
posed rigid-body rotations, P must be an isotropic function of T, so that
P = F01 + F11T + 9 2T2 by the Cayley-Hamilton theorem. Alternatively, this expres-
sion may be written in terms of the Cauchy stress deviator T' = T - 1/3 (tr T)I as

P = ýt01 + ýtlT' + 2T2• (3.4)

Here, Ng, tl, and 9t2 are functions of ax, 0, and the three invariants of T

J1 = tr T, J 2 = 1/ 2 [(tr T)2 _ tr T2 ] , J 3 = det T. (3.5)

As a matter of convenience, the equivalent set of invariants J 1, X2, and J3 will be
used in what follows, where prime indicates invariant of T'.

As is usual in metal plasticity, it is assumed that unloading a material ele-
ment to zero stress from any state returns the element to a volume that depends
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only on the temperature. It can be shown that a necessary and sufficient condition

for this to hold is that

tr =0. (3.6)

Condition (3.6), together with (3.4), implies the restriction

3p - 2J2 92 = 0 (3.7)

Using (3.7), the second-law restriction (2.27) requires that

py= -2J 2 g, + 3f3 g2 > 0. (3.8)

Also, (3.7) and (3.4) combine to yield

2y'2 1121 + 111T' + L-2T'2 . (3.9)

Certain assumptions concerning the mechanical behavior are now introduced
in order to further reduce the form (3.9). If W(H, 0) is specified such that T = 0
when H = 1 and 0 = 00 (a reference temperature), then HQ may be interpreted as
an elastic deformation gradient, as described previously. Accordingly, the defor-
mation gradient of a material element in the elastically unloaded (or "plastically
deformed") configuration with respect to a fixed reference configuration is
QTRH-1F. Here, F is the total deformation gradient with respect to a reference
configuration, and Q is again an arbitrary, time-varying rotation tensor. It is
emphasized that consideration of this unloaded configuration is not mandatory and
is purely an aid to the mathematical formulation of certain physical assumptions.

To proceed further, it is assumed that H represents "small" elastic deforma-
tions in the sense that Y, in the polar decomposition

H = P(1 + Y), (3.10)

is small. Here, P is a rotation tensor and Y is symmetric. The logarithmic plastic
extension rate corresponding to a material direction m is

ip p1 = m- P m + O(Y), (3.11)

in which Xp is the stretch of a material line element in the unloaded configuration,
whose direction in the current configuration is along the unit vector m. Now, it is
always possible to find an orthonormal triad {Vl, v2, v3} such that

vi-T'vi=0, i=1,2,3; (3.12)

i.e. such that the normal deviatoric stress is zero on planes whose normals are vi.
One possible physical assumption that might be made is that the plastic extension
rates are also zero, to 0(1), in these directions. Clearly the condition P0 = R2 = 0
is sufficient for this to hold; it turns out that it is also necessary. In other words,
if

g, = ,-r(J1 , J'3, J x) T', (3.13)

then any cubic material element that suffers only deviatoric shear stresses on its
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faces will likewise plastically deform exclusively by shearing on face-planes, and
conversely. Additionally, for metals it is reasonable to remove the dependence of
ýt1 in (3.13) on J, (i.e. pressure-independence of plastic flow). Having done this,
(3.13) represents the classical J 2-viscoplasticity theory, except for the dependence
of ji 1 on f3.

Equation (3.13) represents perhaps the simplest reasonable model for rate-
dependent inelasticity in metals. However, it is well-known that the physical
assumptions leading to this expression are not realized in most metals at large
strains. In particular, large-strain twisting of thin-walled tubes generally results in
the development of either axial deformation or axial stress, depending on whether
the tube length is held fixed or not. This phenomenon is known as the Swift
effect, following the original investigation by Swift [16] using solid bars.

The Swift effect is generally associated with anisotropy due to developing
texture [17]. However, for some applications it may be desirable and practical to
retain the isotropy of the present model, but still capture the Swift effect. If po
and 4i2 in (3.4) are not zero, then some aspects of the Swift effect are exhibited by
the present model. In particular, any material direction v such that v -T' v = 0,
suffers the (approximate) logarithmic plastic extension rate

vv- P V = t2 (2/3 J2 + T2). (3.14)

Here, C2 = (T'v), (T'v) (i.e. r is the magnitude of the shear stress on the plane
whose normal is v). From (3.14) it is clear that a pure shear stress state, such as
exists in a free-end torsion test of a thin-walled tube, produces axial plastic defor-
mation. Also, since J1 = /'3 = 0 in a pure shear stress state, and since X2 is an
even function of stress, the axial deformation rate must be an even function of the
shear stress. This is consistent with the isotropy of the material model. Indeed,
in the context of isotropic, rate-independent plasticity, both Hill [18] and Billing-
ton [21] note that the assumption of isotropy demands that the axial plastic defor-
mation rate be an even function of the shear stress. They further note that classi-
cal isotropic plasticity, with a normality flow law, predicts nonzero axial plastic
deformation in free-end torsion only if the yield function depends on J'3.

In line with these observations, the following "generalized isotropic" model
for rate-dependent metal plasticity is proposed:

] ' ; (3.15)

g=[2 (4/27J' 2  + 4/3 1 3 )-4/9 J' 2 I1'/ • (3.16)

In (3.15), i0 is a constant and M is a rate-dependence exponent; rate-independent
behavior is approached as M -- >o. It should be noted that 12 - 0 always, and
that the hardening function g I(a) > 0 whereas g2(W) may be positive, negative, or
zero. The factor 3 under the radical in (3.15) is included so that the term J-23 12
would equal the axial stress in a uniaxial stress state; g l(O) may therefore be
regarded as a "flow stress" in uniaxial tension. The origin of (3.16) is that 6 is
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proportional to the root-mean-square of the principal plastic stretch rates. That is,

a• = E (a/ 1 ai) (3.17)
3 i=i

where the ai's are the principal directions of P (and of T), and where the constant
of proportionality was chosen so that & would equal the axial plastic stretch rate
in uniaxial tension. Finally, it is noted that the second-law restriction (3.8)
requires that

-'-3 < g 2(a) < '13. (3.18)

Assuming isotropic elastic response (i.e. W in (3.3) is an isotropic function
of HTH), and employing the small-elastic-strain approximation (3.10), the stress
response is given by

0

to first order in Y. Here, G is the shear modulus and K is the bulk modulus. The
P3 appearing in (3.19) is given by (3.9), where g, and p2 are in turn as given in
(3.15).

4. Discussion and Conclusions

With regard to the first of (3.19), it bears emphasizing that the corotational
rate of Cauchy stress that appears is the Jaumann rate (i.e. that involving W), and
that this is the only corotational rate consistent with the assumptions made in this
single-state-variable formulation. In conventional formulations that begin with an
ad hoc decomposition of D into elastic and plastic parts, it is generally necessary
to make some choice for the corotational stress rate. For example, the corotational
rate involving IkRT (where F = RU is the right polar decomposition of the total
deformation gradient) is often preferred over the Jaumann rate, since its use elim-
inates the aphysical stress oscillations present when the Jaumann rate is used in
conjunction with kinematic hardening [19]. It is, in fact, possible to formulate a
model within the present framework in which the Jaumann rate in (3.19) is
replaced by the rate involving tRRT. However, to do so it is necessary to include
among the state variables both the left stretch tensor V (from F = VR), and another
second-rank tensor whose evolution equation depends on V in a complicated
manner. It is difficult to justify such state variables on physical grounds. Indeed,
an attraction of the present constitutive framework is that the influence of any past
configuration or history must be accounted for explicitly, by inclusion of appropri-
ate state variables. Within this framework, the physical phenomena associated
with the notion of kinematic hardening may be modeled by including one or more
physically meaningful, tensorial state variables. Dafalias [20] has made points
similar to the forgoing in a slightly different context.

An advantage of the "generalized isotropic" viscoplasticity model of Section
3 is that the hardening functions gl(a) and g2(c0 may be easily measured with just
a single material test. Specifically, g l(c) may be determined from the shear-stress
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response in monotonic, free-end torsion of a thin-walled tube, whereas g 2(W) may
be obtained from the axial extension that occurs during the test. Indeed, from
(3.19), (3.9), and (3.15), it is easily seen that

3G D 33 - 3D 23 'T 3D 3 3g()=- and (4.1)
G D 23 -

1/2 t D 23

gl(') =3. = (4.2)

In (4.1) and (4.2), r is the torsional (i.e. shear) component of Cauchy stress,
whereas D 33 and D 23 are the axial and torsional components of the deformation
rate. Typically, D 23 would be prescribed, and T and D 33 would be measured. The
approximations indicated in (4.1) and (4.2) are related to the fact that G >>» ; in
(4.2) the fact that (typically) M > 50 has also been used. In addition to (4.1) and
(4.2), there also holds

& = 2/3 (D 23 - t l2G) {[g 2(C]12 /3 + 1}' Z 2/13[3(D 33)
2 + (D 2 3)2 ],/ . (4.3)

The stress response in uniaxial tension and in fixed-end torsion, which depends on
gl(a) and g2(W) in a more complicated way than in the free-end-torsion case, may
then be used to assess the validity of the model's predictions.

As mentioned above, the isotropy of the model requires that a stress reversal
in free-end torsion does not reverse the sense of the axial deformation rate. If the
Swift effect were due entirely to texture formation, then such a stress reversal
should result in a reversal of axial deformation rate. (In this connection, see [22],
in which an analytical solution is given for the stress response of an idealized
polycrystal with developing texture in simple shear.) However, in their study
using aluminum, Freudenthal and Ronay [23] report that the axial deformation
continues in the same sense in reversed torsion after small amounts of additional
strain have accumulated. This suggests that the present "generalized isotropic"
model may be useful for many purposes over a fairly large range of strain, partic-
ularly for metals that do not exhibit a strong Bauschinger effect.

The development of Section 2 demonstrates the feasibility of formulating a
general constitutive framework of practical significance, starting with only a small
set of conceptually clear assumptions and definitions. The resulting construct then
serves to define the state and the response at future times, given the state at the
current time and the future stimuli. The generalized isotropic model presented in
Section 3 represents an example of the usefulness of the general theoretical frame-
work. Ideally, one may choose the type and number of state variables, decide on
the nature of the dependencies in (2.17)-(2.20), and then appeal to physical rea-
soning to define the remaining constitutive functions. This process has been com-
pleted for metallic single crystals, and for a class of strongly cross-linked poly-
mers. These cases will be presented in future articles.
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ABSTRACT

An investigation was performed to study the damage resistance of organic matrix

laminated composites to low-velocity impact. Matrix cracking and delaminations were

the major concern of the failure modes. T300/976 and T800H/3900-2 graphite/epoxy

laminated composites were selected for the study. The surfaces of the T800H/3900-

2 prepreg contain thermoplastic polyamide particulates for toughening the laminate

interface. Both analytical and experimental work were performed to evaluate the

impact damage resistance of the composites. A computer code, "3DIMPACT", was

developed for predicting the impact velocity threshold corresponding to the initial

impact damage and estimating the extent of delaminations after impact. Tests were

also performed to generate test data for verifying the predictions from the code.
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I. INTRODUCTION

Organic matrix fiber-reinforced laminated composites have been known suscep-

tible to transverse impact, especially at low velocities which can cause significant

internal damage such as matrix cracks and delaminations. Numerous investigations

have been conducted in this area [1 - 22] and extensive impact test data are available

from the literature. It has been observed that the impact damage resistance strongly

depended upon many factors including material systems, ply orientation, laminate

thickness, as well as the mass of the impactor, etc.

Several analytical models [15-22] have been developed to study the transient dy-

namic response of composites due to impact. However, most of the analytical studies

were primarily focused either on modelling the impact force distribution during im-

pact [15-17] or on determining the response of the plates without consideration of the

damage which may be induced during impact[18-22].

Recently, extensive studies on impact damage mechanism and mechanics were

performed by Choi et al [23 - 26]. A line-nosed impactor was used to simplified the

impact damage and to characterize the damage mechanism and mechanics. A two-

dimensional transient dynamic analysis was also developed for understanding the

damage mechanism of laminated composites subjected to line-nosed impact'.

Based on these studies, an investigation was conducted by the authors to develop

a model as well as a computer code for predicting impact velocity threshold corre-

sponding to the initial impact damage and estimating the extent of delaminations

resulting from transverse low-velocity impact [27, 28]. In this presentation, compos-

ites with two different material systems, T300/976 and T800/3900-2 prepregs, were

studied. The computer code was utilized to characterize the impact resistance of the

materials. Experiments were also performed to generate test data for verifying the

predictions from the code.
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U. IMPACT DAMAGE MECHANISM

Since impact damage is a very complicated phenomenon, predicting impact dam-

age requires a thorough understanding of the basic damage mechanism and mechanics

governing the impact damage event. In order to achieve such understanding, Chang

et al[23-25] performed a series of extensive studies on impact damage mechanism and

mechanics of laminated composites. Based on the these studies and the work done by

others [2,4,9, 111 , the basic damage mechanism resulting from low-velocity impact

can be in general summarised as follows:

(1) impact damage is initiated from an intraply matrix crack(s).

(2) the initial matrix crack(s) can produce delaminations along the neighboring in-

terfaces with the dissimilar materials.

(3) the propagation of the delaminations during impact can generate extensive mul-

tiple micro-cracks.

The initial matrix cracks which produce delamination failure can be classified bi

their location into two types: one is referred to as "the shear crack" and the other is

"the bending crack". A shear matrix crack appears inside the materials and is located

a distance from the center of impact. It can generate an extensive delamination along

the bottom interface and a small, confined delamination along the upper interface Jf

the cracked ply (see Figure 1). However, a bending matrix crack is located right

beneath the center of impact and mostly appears on the bottom surface ply of a

composite (see Figure 1).

Chang et al [23 - 25] have shown that the interlaminar transverse shear stress

and in-plane stress normal to the fiber direction are the major stress components con-

tributing the initial impact damage. Excessive interlaminar shear stress will initiate

shear cracks and high transverse in-plane normal stress will most likely produce a

bending crack. However, once the matrix cracking is initiated, the occurrance and
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growth of a delamination strongly depend upon the type of the matrix crack.

A recent study by Liu and Chang, et al [29 - 31] has shown that for a shear

crack-induced delamination, the interlaminar longitudinal shear stress (along the fiber

direction) in the layers right below the interface and the interlaminar transverse shear

stress (normal to the fiber direction) right above the interface govern the delamination

growth (Mode II and III fractures). A schematic description of the delamination

growth mechanism induced by a shear crack is shown in Figure 2. However, for a

bending crack-induced delamination, the in-plane transverse normal stress and the

interlaminar logitudinal shear stress (Mode I and II fractures) in the layer right below

the interface control the delamination propagation. A schematic description of the

delamination growth mechanism is shown in Figure 3.

III. THE MODEL

Based on the aformentioned damage mechanism, a model will be presented for

predicting low-velocity impact damage in fiber-reinforced, epoxy matrix laminated

composites. The model consists of a stress analysis for determining the stress distri-

butions inside the laminates during impact and a failure analysis for predicting the

initiation and the extent of the impact damage.

3.1 STRESS ANALYSIS

The finite element analysis developed by Wu and Chang [18] was adopted in

the model for calculating the stresses and strains inside the composites during im-

pact resulting from a spherical-nose impactor. The analysis was based on a three-

dimensional linear elasticity theory, and the materials in each layer were considered

homogeneous and orthotropic. Accordingly, the equilibrium equations at instant time

t in a variational form can be expressed as [28]
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0 = j wipu1 ,udv + f e,,Eiklek/dv - j wi,,njdA (1)

where aij are the stresses, 41 are the strains, p is the density, ui,tt are the accelerations

(utt = a 2 u,/(t 2 ), wi are the arbitrary variational displacements, eij are the strains

from the arbitrary variational displacements, fQ is the entire plate volume, F is the

surface of the plate, nj is the outward unit normal vector on the plate surface, and

Eijkl are the material properties of the laminate, which vary from layer to layer

according to the ply orientation of the composite.

In order to solve Eq.(1), the distribution of the contact force, F(= aijnj), be-

tween the impactor and the impacted laminate must first be known. The projectile

was modeled as an elastic body with a spherical nose. The contact force distribution

during impact was simulated according to loading and unloading processes.

Upon loading (the contact force was increased), the contact force distribution

was determined using the Hertzian contact law [281. Thus, the contact force F can be

related to the indentation depth a (the distance between the center of the projectile's

nose and the mid-surface of the plate) by the expression [28]

F = Kal'5 (2)

where K is the modified constant of the Hertz contact theory proposed by Sun et. al.

[15,16] and

4
3 [(1 - V2)IE, + lIEV1 ] (3)

where r, v, and E, are the local radius, the Poisson's ratio, and the Young's modulus

of the impactor, respectively. E1y is the transverse modulus normal to the fiber

direction in the upper most composite layer.
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Upon unloading, the contact force is simulated by the following relation devel-

oped by Sun et. al. [15,16]

F= Fm [ a-- ,2.5 (4)
Lam - ao0

where Fm is the maximum contact force just before unloading, am is the maximum

indentation corresponding to Fmo, and ao is the permanent indentation during the

loading/unloading process. The permanent indentation can be determined from the

following expression [15,16]

ao = 0 when cm < acr

ao = am [1 am) J when am > acr

where ac, is the critical indentation, and is approximately 0.004 inches for glass/epoxy

and 0.00316 inches for graphite/epoxy.

An eight-node brick element incorporating incompatible modes developed previ-

ously by Wu and Chang [18] was used in the finite element calculations. The inclusion

of incompatible modes was to improve the accuracy in calculating the bending stiff-

nesses and the interlaminar shear stresses. The accuracy of the computer code was

verified by comparing with the existing analytical and numerical solutions [18]. For

instance, consider an isotropic rectanglular steel plate rigidly fixed on its four edges.

The plate was subjected to an impact induced by a steel ball to its center. The ana-

lytical solutions of the contact force, displacements, and velocity of the center of the

plate and impactor are presented in Figure 4 as compared to the numerical solutions

calculated by the code. As shown from the figure, excellent agreement can be found

between the analytical solutions and the calculated results.

3.2 FAILURE ANALYSIS

Based on the impact damage mechanism discussed in Section II, two failure

criteria, critical matrix cracking criterion and impact-induced delamination criterion,
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were proposed in the model. The former was proposed to predict the initiation of the

impact damage, and the latter was for predicting the extent of the delaminations in

composites resulting from the low-velocity impact.

Critical Matrix Cracking Criterion

In order to predict the occurrence of the critical matrix cracks, the matrix failure

criterion proposed previously by the authors [24] was selected and can be expressed

as

{ eM > 1 Failure

2 em < 1 No failure
ny + S• e { "y =" Yt if 5YY > 0 (6)

y =n y, if FY<0

where the subscript of x and y are the local coordinates of the n-th layer parallel and

normal to the fiber directions, respectively, and z is the out-of-plane direction. Si is

the in situ interlaminar shear strength within the laminate under consideration, and

Yt and Y, are the in situ ply transverse tensile and compressive strength, respectively

[24].

Unfortunately, the interlaminar shear strength within the laminate has not been

well characterized in the literature and was frequently taken to be associated with in-

plane shear strength. Therefore, the values of Yt and Si of n-th ply were determined

from the empirical expressions proposed previously by Chang and Lessard [32]. Ty,

and Ty, are the averaged interlaminar and in-plane transverse stresses, respectively,

within the n-th ply which can be expressed as

and = t a dz (7)

and

"FY= tna., dz (8)

547



where t, and t,-I are the upper and lower interfaces of the n-th ply in the laminate

and h, is the thickness of the ply.

Whenever the calculated averaged stresses in any one of the plies in the laminate

first satisfy the criterion (eM = 1) during impact, initial impact damage is predicted.

It was assumed then that the matrix crack would propagate throughout the thickness

of the ply group which contained the cracked ply. The time t corresponding to the

initial damage is designated as tM. A delamination could be immediately induced

from the location of the matrix crack along the interfaces of the ply group. As the

time increases (t > tM) during impact, additional matrix cracking could be produced

in the other layers. Hence, the criterion should continuously be applied to the other

layers for determining any additional matrix failure. If no additional matrix cracking

is found at any other layers during impact, then the impact velocity associated with

the first matrix cracking is referred to as the impact velocity threshold which is the

velocity required to just cause the initial impact damage of the laminate.

Impact-Induced Delamination Criterion

Based on the consideration of the aformentioned delamination growth mecha-

nism, the distributions of the interlaminar longitudinal shear stress o2 . and transverse

in-plane stress a., throughout the thickness of the bottom layer of the interface and

the interlaminar transverse shear stress oryz in the upper layer contribute significantly

to the delamination growth resulting from impact. Therefore, an impact-induced de-

lamination growth criterion for low-velocity impact was proposed in the model [27,28]

which can be expressed as

f eD > 1 Failure

/ii+!1 ~ l 2 2] eD <1 No failure
D.Z ~2 eD n+ly ... n+l y fW >.s, n+ n+ 1 Y {.if,=. ,

,+ly =,+l Y, if Fy,< 0

(9)
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where D, is an empirical constant which has to be determined from experiments.

Once chosen, it was found to be quite insensitive to the ply orientation and thickness

of the laminates, and primarily dependent only on the material system used [27, 28].

The subscripts x, y, and z are the local material coordinates of an individual ply

within the laminate, and the superscripts n and n + 1 correspond to the upper and

lower plies of the nth interface, respectively. Ty , yy, and 7,z are the averaged

interlaminar and in-plane transverse stresses within the n-th and n + lth ply (see

definition in Equations 7 and 8).

Accordingly, once a critical matrix crack is predicted in a layer, the delamination

criteron is then applied to estimate the extent of the delamination along the interface

of the cracked ply in the laminate. It is noted that only the delaminations along the

bottom interface (see Figure 1) induced by shear cracks or along the upper interface

induced by a bending crack are included in the analysis. The small, confined delami-

nation along the upper interface induced by shear cracks (see Figure 1) is ignored in

the present model.

A computer code, designated as "3DIMPACT", was developed based on the

model. In summary, the procedures for determining the extent of the impact damage

in the code can be described as follows:

(1) Calculating transient dynamic stresses within each layer as a function of time.

(2) Applying the matrix failure criterion for predicting the critical matrix cracks in

each layer for determination of the extent of delaminations.

(3) If matrix cracking is predicted in a layer of the laminate, then applying the de-

lamination criterion subsequently in the upper and bottom layer of the interface

during the entire period of impact.

The sequence of the above impact damage mechanism is essential for the predict-

ing the impact damage. The procedure has to be repeated at the other layers during
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impact for determining any additional matrix cracking and delaminations. The final

size of each delamination is determined by the area within the stress components

satisfy the delamination failure criterion during the entire duration of impact. No

material degradation was considered in the model, and it is also noted that the model

doesn't take into account the delamination interaction during impact which may be

important for multiple delaminations.

IV. COMPARISONS AND DISCUSSIONS

In this section, numerical results generated from the computer code will be com-

pared with the impact test data obtained during the investigation. T300/976 and

T800H/3900-2 graphite/epoxy composites were selected for the study. Although both

composites have thermoset resins, T800H/3900-2 prepreg is coated with thermoplastic

polyamide particulates to toughten the laminate interface. The mechanical properties

of an unidirectional composite for both materials are listed in Table 1. Due to the

presence of polyamide particulates, the thickness of a single ply of T800H/3900-2 was

slightly thicker than that of T300/976.

The configuration of the specimens are given in Figure 5, and the experimental

setup is shown in Figure 6. A spherical-nose steel impactor with a radius of 0.25 inches

was used in the tests. All the specimens were only tested once, and then followed by

an x-ray examination for determination of internal damage. In this presentation, only

selected test data will be presented. More test data and the comparisons between the

model prediction and the data can be found in [28].

T300/976 Graphite/Epoxy Composite

Figure 7 shows three X-radiographs [454/-458/454] composites tested at three

different velocities. The top X-radiograph was taken from the laminate subjected

to impact at a velocity slightly above the impact velocity threshold of the laminate.

Two distinct, parallel, short matrix cracks which were located near the area of impact
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within the middle -45 degree ply group of the laminate were clearly shown in the

Figure 7. A long matrix crack aligned in the 45 degree fiber direction and located

in the bottom 45 degree ply group was also clearly indicated. These cracks were

most likely assocated with the critical matrix cracks from which delamination was

initiated. A white color area in a peanut shape oriented along the 45 degree fiber

direction showed that a delamination existed at the interface between the middle -45

degree ply group and the bottom 45 degree ply group.

As the impact velocity increased, the first delamination found at the last in-

terface between -45/45 ply groups was increased substantially as shown in the X-

radiograph located at the middle of Figure 7. At a much higher velocity, as given

in the X-radiograph at the bottom of Figure 7, the first delamination at the last in-

terface measured from the top surface always governed the major delamination size,

meanwhile, a relatively smaller delamination at the first interface between 45/ - 45

ply groups was also observed near the impact area, in addition to a considerable

amount of microcracks in the 45 and -45 degree ply group. However, the second

delamination was confined to the impact area and kept within two parallel matrix

cracks. Apparently, it seemed to indicate that the second delamination was generated

along the upper interface of the cracked ply group by the shear cracks in the -45

degree plies (referred to Figure 1).

A summary of the measured delamination sizes in [454/-458/454] composites

as a function of the velocity of the impactor with 0.16 kg is shown in Figure 8.

Solid circular and rectangular symbols represent the measured delamination length

and width in the longitudinal and transverse directions as a function of the impact

velocity, respectively. The top figure corresponds to the first delamination along

the interface of the -45/45 degree plies, and the bottom one relates to the second

delamination which occurred at the first interface of the laminate measured from the

top surface.

Clearly, there existed an impact velocity threshold for the laminate. The first
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delamination seemed to appear earlier than the second delamination. It is worth

noting that no matrix cracks or delamination was found in the laminate from the

X-radiographs when the impact velocity was less than 3.3 m/s.

The predicted delamination sizes at the last interface as a function of the impact

velocity are also presented by the solid and dashed lines in Figure 8. The impact

velocity threshold was slightly underestimated but still agreed with the data reason-

ably well. The first critical matrix cracking was predicted at the middle -45 degree

layer of the laminate. The predicted delamination length and width also correlated

well with the data. However, no delamination was predicted along the first interface

within the range of the selected test velocities. This was becuase the model could

not be applied to estimate the second, small delamination induced by a shear matrix

crack.

Although the test data was quite scattered, a relationship which was quite con-

sistent with the predictions seemed to exist between the delamination size and the

velocity of the impactor. The longitudinal length of the delamination seemed to be

more sensitive than the transverse width to the increase of the impact velocity. The

longitudinal length of the delamination was always oriented along the fiber direction

of the bottom ply below the delamination interface.

As a comparison, the numerical simulations of the delamination size of the com-

posites subjected to impact at the velocities corresponding to the ones given in Figure

7 were generated, and the results of the predictions were presented in Figure.9. The
"asterisk" symbol in the figure indicates the location where the stresses were calcu-

lated and satisfied the impact-induced delamination criterion. The area covered by

the asterisks gives the estimation of the delamination size. Corresponding to each ve-

locity given in Figure 7, the predicted shape and size of the first delamination shown

in Figure 9 were reasonably consistent with the results of the X-radiographs givn in

Figure 7. However, no delamination was predicted in the sencond interface.
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The test results of quasi-isotropic laminates are shown by X-radiographs in Fig-

ure 10 corresponding to two different impact velocities. Multiple delaminations were

found in the laminates along the interfaces where the neighboring plies have different

ply orientations. In Figure 10, the predicted overall delamination sizes of the com-

posites corresponding to the test condition were also presented. The predictions were

apparently quite consistent with the test data obtained from X-radiographs.

Delamination was predicted at each interface except the first one between 450

and -450 ply groups measured from the impact surface. The calculated delamination

size and shape at each delaminated interface corresponding to the impact velocity of

7.8 m/s are presented in Figure 11. It is interesting to point out that each predicted

delamination was oriented itself along the fiber direction of the bottom ply group

below the delarninated interface.

T800H/3900-2 Graphite/Epoxy Composite

Figure 12 summarizes the measured delamination length and width as a function

of the impact velocity for T800H/3900-2 [06/903]s laminates. The initial impact

damage was found to be a bending crack in the bottom 900 ply group at the impact

velocity near 3m/s. However, unlike T300/976 composite, no delamination was found

accompanying with the matrix crack from the specimens, until the impact velocity

was increased up to 4m/s which produced a delamination along the interface between

the 90' and the central 00 ply groups. As the impact velocity continued to increase,

the size of the delamination increased as well.

The predictions based on the model are also shown in the figure by solid lines.

The predictions correlated very well with the data. Only one delamination was pre-

dicted on the second interface between 900 and 00 ply groups measured from the

impact surface, which was also confirmed from the experiment.

Apparently, based on the above comparisons, the code can provide reasonable

prediction on the initiation and the extent of delaminations in both composites with
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different material systems. To further compare the impact damage resistance between

the two materials, the overall delamination area as a function of the impact velocity

for the laminates with [02/ - 452/452/902], ply orientation were calculated from the

code. The calculations are presented in Figure 13. It shows that T800H/3900-2

composite has a higher impact velocity threshold and can resist delamination growth

much more effectively than T300/976. At the impact velocity of 7.Om/s, the overall

size of the delaminations in T300/976 composite is about four times bigger than that

in T800H/3900-2 composite.

V. CONCLUSION

An investigation was performed to study impact damage resistance of organic

matrix laminated composites. T300/976 and T800H/3900-2 graphite/epoxy compos-

ites were studied. A model based on the impact damage mechanism was developed.

The predictions obtained from the 3DIMPACT computer code compared favorably

with the test data performed during the investigation. The code can be used to pre-

dict the initiation of damage and the extent of delaminations in laminated composites

resulting from low-velocity impact.
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Table 1 Material Properties of T300/976 and T800H/3900- 2 Unidirectional Composites

Propertv T300/976 T800H/3900.2

Longitudinal Young's Modulus Exx (GPa) 156.0 159.6

Transverse Young's Modulus Eyy (Gpa) 9.09 9.14

Shear Modulus Gxy (GPa) 6.96 6.21

Poison's Ratio )xy 0.23 0.28

Poison's Ratio oyz 0.40 0.28

Longitudinal Tensile Strength XT (MPa) 1520 2841

Longitudinal Compressive Strength Xc (MPa) 1590 13 13

Transverse Tensile Strength YT (MPa) 44.5 44.1

Transverse Compressive Strength Yc (MPa) 252.0 167.5

Shear Strength S (MPa) 35.6 121.3

Ply Thickness ho (m) 1.44e-4 1.66e-4

Density p (kg/m 3) 1540 1518

Delamination parameter Da 1.80 0.45
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Figure 1 Basic impact damage mechanism of fiber-reinforced laminated composites sub-

jected to low-velocity impact. (top): Delamination induced by inner transverse

shear matrix cracks, (bottom): Delamination induced by a surface bending crack.
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Figure 2 Schematic description of delamination growth mechanism induced by a shear

crack in laminated composite due to impact.
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Figure 3 Schematic description.of delamination, growth mechanism induced by a bending

crack in laminated composite due to impact.
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Figure 5 A schematic description of the test impactor and the specimen setup used in the

experiments. A spherical steel ball of 0.635 cm radius mounted to a rectangular

base.

564



BOTTLE
GAUGE

C ) BOTTLE

TANK GAUGE VALVE

S~AIR
1 2 3BOTTLE

1. TRIGGER BUTTqON
2. SAFTY LOCK CONTrn O3. AIR CONTROL BUTTrON BOX TRIGGER

VALVE

BARREL/.

TIMER

SUPPORTING COMPOSITE
FIXTURE PLATE

Figure 6 A schematic description of the impact test facility.

565



T300/976 [454/-458/454]

Mass = 0.16 kg Velocity = 4.15 rn/s

Mass - 0.16 kg Velocity - 5.89 m/s

Mass - 0.16 kg Velocity - 9.02 m/s

Figure 7 X-radiographs of [454/-458/45/4] composites subjected to impact by a spherical

indenter at three different velocities.
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Figure 8 Comparison of delamination sizes of T300/976 [454/ - 458/454] composites be-

tween the measurements from the experiments and the calculations based on the

model.
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T300/976 [454/-458/454]

Mass = 0.16 kg Velocity = 4.15 mn/s

Mass = 0.16 kg Velocity = 5.89 m/s

. . ....... . . .

Mass =0.16 kg Velocity = 9.02 rn/s

Figure 9 Predicted delamination sizes of T300/976 [454/ - 458/4541 composites corre-

sponding to the impact condition given in Figure 7.
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T300/976
[04/454/-454/904/-454/454/041

Mass= 0.16 kg Mass= 0.16 kg
Velocity = 7.8 m/s Velocity = 5.2 m/s

Figure 10 Comparison of delamination sizes and shapes of T300/976 [04/454/- 454/902.,

composites between the X-radiographs taken from the experiments and the cal-

culations based on the model.
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Figurell Predicted delamination sizes and shapes of T300/976 [04/454/ - 454/9021, com-

posites at different interfaces.
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Figure 12 Comparison of delamination sizes of T80OH/3900 - 2 [06/903]s composites be-

tween the measurements from the experiments and the calculations based on the

model.
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2 composites.
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THE EFFECT OF LOW TEMPERATURE ON
THE FLEXURAL FATIGUE AND FRACTURE OF

UNIDIRECTIONAL GRAPHITE/EPOXY COMPOSITES

Piyush K. Dutta

U.S. Army Cold Regions Research and Engineering Laboratory
Hanover, New Hampshire 03755.

INTRODUCTION

This paper deals with the behavior of unidirectional graphite/epoxy compos-
ites in flexural fatigue and fracture over a temperature range of 20' to -40'C. Fatigue
behavior and damage accumulation in fiber composites have been well studied
for room temperature and higher service temperatures, but very few data exist for
low temperature regimes. Basic failure mechanisms in composite laminates
include inter- or intra-laminar matrix cracking, interface failure, and fiber
fracture. Temperature reductions result in a stiffer and more brittle matrix and can
potentially influence these failure mechanisms. The objective of this study is to
understand the damage state, stiffness, strength, and fatigue properties of com-
posite laminates as a function of reduced temperatures.

The yield strength of a composite laminate is a reliable measure of the internal
damage as proven by Roylance et al. [1]. Hence, in this study the yield point was
used as the basis for damage development comparisons under different tempera-
tures. The specimens were subjected to 105 flexural load cycles between 20 and
80% of the expected yield strength. Modulus changes were determined at several
intervals as the fatigue cycling progressed. The bending strength was determined
upon completion of 105 cycles. Variables used to describe the specimen's fatigue
and post-fatigue behavior are defined according to Figure 1. Failure surfaces were
examined under a scanning electron microscope (SEM) to detect failure modes.
Results of tests performed at different temperatures were then compared to
determine temperature effects.

EXPERIMENTAL PROGRAM

Specimens prepared for this investigation were cut from 305- x 305-mm (12-
x 12-in.) T300/Fiberite-975 graphite/epoxy panels of unidirectional lay-up.
Completed specimens measured 229 x 17.8 mm (9 x 0.7 in.) and were 16 plies
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Figure 1. Test schematic.

in thickness. The fibers were oriented in the longitudinal direction of the
specimens. After cutting, all specimens were X-rayed to ensure that they were
free from internal defects. Because moisture content can dramatically affect the
strength and failure mode of composites, specimens were maintained in a sealed
container until testing. Small samples were tested periodically to ascertain that the
moisture content was unaltered.

Four-point bending tests were performed at 200, 0', -20', and -40'C to es-
tablish the bending modulus and loads associated with yield and failure. A
photograph of the test setup is provided in Figure 2. All tests were performed in

Figure 2. Setup for low temperature testing.
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Figure 3. Loading arrangement used for four-point flexure test.
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a nitrogen-gas-cooled environmental chamber. Temperatures within the chamber
were controlled by a cooled nitrogen gas flow (varied by a thermostatically
controlled solenoid valve). The loading system was actuated by a computer-
controlled electrohydraulic machine. The four-point loading apparatus consisted
of four 6.35-mm (0.25-in.) diameter rollers. Although the lower two rollers were
fixed, the upper two were free to pivot about the x-axis (parallel to the length of
the specimen, see Fig. 3). This configuration ensured that any twisting of the
specimen was not transmitted as a side load, and it also accounted for any small
deviations in thickness across the sample.

The bending modulus of elasticity E and the breaking strength S were cal-
culated from the following equations:

E = Pa(3L2 - 4a2)/4bh3d (1)

S = 3Pa/bh2  (2)

where
P = load (N)
a = distance between the closest support and the load roller (m)
L = support span (m)
b = specimen width (m)
h = specimen thickness (m)
d = vertical deflection of the specimen center (m)

Flexural fatigue tests were conducted over the same temperature range as the
four-point bending tests. For all low temperature testing, specimens were placed
in the environment chamber and allowed to cool to the desired temperature for at
least one hour before testing. Each specimen was subjected to 105 sinusoidal
loadings at a frequency of 4 Hz within the limits of 20% and 80% of the yield load.
This frequency is well below 10 Hz, at which hysteresis heating develops. To
obtain damage accumulation estimates through stiffness data, load-deflection
characteristics were recorded from separate quasi-static tests performed on the
samples at the beginning, midpoint, and end of the fatigue cycle. Load applied
during the quasi-static tests was 80% of yield. Upon completion of the fatigue
cycle and corresponding quasi-static test at 105 cycles, bending tests to failure
were performed at the specified temperatures.

Load and deflection for all quasi-static tests were recorded on a Nicolet
4094A digital oscilloscope at a rate of 200 samples/second. The cross-head speed
was 1.22 mm/s (0.05 in./s). Load was was recorded directly as voltage outputs
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Figure 4. Load and deflection results in four-point flexure tests.
a. Failure in static flexure test at -20'C (non-fatigued specimen)
b. Failure in static flexure test at -20 0 C (fatigued specimens).

from the electrohydraulic loading system, and the deflection was read through a
specially fabricated cantilever extensometer calibrated at low temperatures.

DISCUSSION AND ANALYSIS OF RESULTS

At all temperatures, load cycling proved to reduce the elastic modulus and
shift the the yield point to a lower value, in effect toughening the material. These
effects can be observed by comparing the data presented in Figures 4a and 4b.
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Compression
Failure

Figure 5. Failed surface of the fatigued GR/EP lamina specimen (SEM).

Yielding occurs at approximately 2900 N for the non-fatigued specimens, as
compared to 2400 N for fatigued specimens. Note also that although both types
of specimens experience failure at approximately 3200 N, the fatigued specimens
exhibit plastic behavior over a greater range of deflections.

Specimen yielding (for non-fatigued and fatigued conditions) began with the
growth of an incipient interlaminar crack in the upper compressive region, close

to the neutral axis. Final failure occurred suddenly with a through-the-thickness
crack generated between load rollers. Observed under the scanning electron
microscope (Fig. 5), 60-70% of the fracture surface exhibited compression
failure. This type of failure is recognized by a light and smooth texture with
clumps of short broken fibers lodged in a disorderly fashion within the substrate
of well-ordered material. In contrast, the tensile failure zone is darker with
abundant evidence of fiber pullouts. The relatively large surface area under
compressive failure was expected due to the strength being substantially lower in
compression than in tension. Failure was initiated on the compressive surface by
local fiber buckling. Owen and Morris [2] observed initiation of similar failures
on the compressive surface of four-point bending tests involving high-modulus
graphite/epoxy fibers. Successive buckling of adjacent layers shifted the neutral
axis farther down to bring more areas of the section under compressive stress.
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Figure 6. Effect of low temperatures on non-fatigued GR/EP 0-degree
laminates under flexural test. (Each data point is the average of 10 tests.)

Initial portions of all load deflection curves exhibited a slight but discernible
stiffness increase, possibly due to fiber straightening when subjected to tension.
The next portion of the load deflection curve was essentially linear to the yield
point. Beyond yield, stiffness continued to decrease until failure occurred.

When the specimens were cooled to 0°C, the stiffness (before and after the
yield point), yield strength, and failure strength increased, but on further cooling
to -40'C, they decreased. The behavior of the matrix, which became stiffer as
temperatures are decreased, is responsible for the initial stiffness increase.
According to Rosen's extensional or shear buckling theory of compressive failure
[3], this matrix stiffness increase may have contributed to the strength increase.
With further cooling, the thermoelastic residual stress (resulting from the thermal
expansion mismatch between the fibers and the matrix) may have exceeded the
matrix strength and allowed microcracks to develop. The effect of these microcracks
would be a reduction of the laminate's stiffness and yield strength, as shown in
Figure 6.

At room temperature, the strength associated with fatigued panels was nearly
identical to that of the non-fatigued specimens. As temperatures decreased,
however, dramatic differences in strength became apparent (Fig. 7). Microdamage
produced during the fatigue process seems to strengthen the material. An
examination of the failure mode revealed that in all cases fracture was initiated
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Figure 7. Effect of low temperatures on GR/EP 0-degree laminates
under flexural test following 105 cycles of fatigue loading. (Each data
point is the average of 10 tests.)

with the growth of interlaminar cracks tending to split the specimen horizontally
in layers. The onset of these cracks corresponded to the yield point. In post-fatigue
tests (for all temperatures), yield loads proved lower than the corresponding loads
for non-fatigued specimens, which suggests that microdamage influenced the
yield. Microdamage was also noted to have lowered stiffness both before and
after yield. The final failure, however, would require through-the-thickness fiber
fracture in tensile and compressive modes. (Compressional fracture by itself will
not cause complete failure.) It is not totally inconceivable that following cyclic
loading the reduction in matrix stiffness allowed the fibers to attain more uniform
stress distribution, therefore allowing higher failure loads. More microdamage is
expected at lower temperatures because of the higher residual thermoelastic
stresses resulting from the thermal expansion mismatches. Larger reductions in
pre-yield and post-yield stiffnesses support this observation (Fig. 7).

CONCLUSIONS

Various models of damage mechanisms and accumulation under fatigue
loading are available in composites literature. Most, however, do not account for
the influence of lower temperatures. The results from flexural fatigue tests,
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presented here, show evidence of non-monotonic changes in residual strength and
stiffness upon progressive cooling. Strength increased but stiffness degraded
with lower temperatures. The constituent's low temperature properties and
thermoelastic stresses seem to be the factors for such paradoxical results. These
influences must be considered to apply damage models to low temperature
regimes. Moreover, because the compressive strength is much lower than the
tensile strength, flexural fatigue is controlled by the compressive strength. Low
temperature enhances the strength and stiffness of the matrix, and thus provides
overall beneficial effects on flexural fatigue.

Acknowledgements: The author thanks Martin Jan Kryska and Dr. Ian Baker
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in this research and test program.
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COUPLED HYDRO-STRUCTURAL ANALYSIS
OF

NON-PERFORATING IMPACTS

Nasit Ari and David Gray
Kaman Sciences Corporation

Colorado Springs, Colorado 80933-7463

1. INTRODUCTION

Standard methodologies exist to evaluate damage from
penetrating impacts and blast/shock loads on structures.
Penetration phenomena and structural response to impulsive loads
are simulated with high fidelity by using Eulerian hydrocodes and
Lagrangian structural finite element codes. In the case of non-
perforating impacts, however, no established techniques exist to
simulate the coupled phenomena of ballistic penetration shocks and
late time structural response. This work-in-progress paper describes
an attempt to establish a robust coupling methodology.

The impact domain consists of stress levels significantly higher
than the yield stress and of extreme deformations such as jetting,
erosion and cavity formation. Eulerian hydrocodes are equipped
with the appropriate equations of state and advection routines to
represent material flow and failure in an efficient way. The
response time of interest in impact problems and, hence, hydrocode
simulation durations are typically in the microseconds. As
hydrocodes employ a very large number of cells, it is
computationally impractical to utilize them to simulate late time
response. Structural codes on the other hand can model the
geometry in more detail with fewer complex elements and simulate
structural response into much later time. These Lagrangian codes,
however, are not most suitable for modelling the early impact
regime: their elements may not accommodate severe geometric
distortions due to penetration and erosion, or they might require
excessive remeshing.

There is considerable effort to extend the range of applicability
of both hydrocodes and structural codes. Eulerian codes are
augmented with coupled Lagrangian elements and structural codes
are modified with slide-line and erosion algorithms. A special
evolution of these efforts is toward the so-called Arbitrary
Lagrangian Eulerian (ALE) codes where the character of elements
are automatically adjusted depending on distortion levels (e.g.
CALE, AUTODYN). However, computational burdens associated
with these modifications could be significant. Nevertheless they
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can be efficient analytic tools for a restricted class of problems
where impact is well localized.

However, for 3-D simulations of high momentum transfer,
massive shock impacts into large targets, these tools might be
inadequate. A logical alternate approach would then be to simulate
the initial cratering with an Eulerian hydrocode and the late time
structural response with a Lagrangian finite element code.

In Section II we briefly describe the present approach to a
strongly coupled impact/structural response problem and its
numerical implementation. Computational validation of the
approach is described in Section III. Section IV discusses application
of the methodology to lethality assessment studies and concludes
the paper.

II. METHODOLOGY

Hydrocodes compute for each cell the strain and stress tensors,
their time rates of change and cell-centered velocities. Thus, at an
appropriate transition time they can supply the initial values for a
structural code computation. The critical issues are selection of the
handover time and self-consistency (compatibility) of initial stress
and velocity fields. The time of coupling should be selected such
that the transferred stress and deformation levels are within the
domain of applicability of the constitutive equations present in the
structural codes. In addition the stress or strain fields should not
violate the compatibility conditions. Otherwise artificial dislocation
and stress singularities might be introduced into the structural code
computation which would cause numerical instabilities. Further, the
interpolation of nodal velocities should give special consideration to
boundaries and interfaces.

If one of the impacting bodies completely erodes or bounces
back during the initial phase, then the structural mesh will consist of
target elements only. If, however, there is a residual projectile mass
still imparting momentum, then the initial setting of the structural
computation will be more complex. Either a sliding surface has to
be utilized or the residual momentum has to be applied as a surface
pressure. Finally the structural mesh should account for the crater
and the deformed geometry. The crater surface will include mixed
and eroded cells and the representation of this region might not be
complete in a structural mesh. It is assumed however that this
deficiency will not affect the overall structural response.

Impulsive loads from impacts lead to fast running elastic shock
waves, slower but higher amplitude plastic shocks, spallation and
late time low frequency structural response. Each of these damage
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mechanisms could be dominant for different subcomponents at
various times depending on their distance from the hit location.

Thus multiple handover times could be utilized for different
substructure analyses. For example, some sensitive equipment far
from the hit point could be influenced by elastic shocks. The early
time hydrocode computations could provide the proper initial and
boundary conditions for this subregion even though a structural
code might not be able to continue a full mesh transition.

Hydrocodes could also be utilized to determine the total forcing
function applied during the penetration phase by monitoring the
total momentum deposited on the target. This load history then
could be applied over the proper loading region within a structural
code. This approach indeed has been validated for simple plate
targets by Quigley'll. The hydrocode and structural code results
have shown close agreement except for high frequencies and
locations near the hit point.

The decision as to which coupling strategy to apply depends on
the impact configuration and relative locations of critical
components with respect to the hit point. This selection process
could be supported with a systematic iterationas follows:

1. Run an initial hydrocode with a rough mesh of the full
structure to establish the extent and timing of various shock
fronts and to identify structurally vulnerable components.
Determine the hydrocode and structural analysis domains.

2. Model the hydrocode domains in more detail and finer mesh.
Establish the proper boundary conditions for the structural
domains.

3. Decide what coupling method to apply to assess damage for
subcomponents.

4. Accordingly, provide to the structural code the initial stress
and velocity state and/or the impulse history on substructures.

The current approach is implemented at Kaman in a
HULL121/ABAQUS131 computing environment. The mesh geometry,
stress, and velocity fields from HULL dumps generate ABAQUS input
files automatically. If meshing of two codes are different, then
rezoning routines and super element techniques could be utilized to
map the fields properly. The automated coupling process should,
however, be checked for self-consistency. A typical computational
loop in a structural code would obtain accelerations from initial
stress distributions and then determine by time integration
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velocities and displacements which in turn yield the next cycle of
strain and stress values. Whether this iteration works numerically
through the coupling (i.e. changes in mesh and equation of state)
however, needs to be tested. In the next section, a proof-of-
principle simulation serves to illustrate various facets of the present
coupling approach.

Ill. NUMERICAL EXAMPLE

The computational example given below is a representation of a
massive rod impact into an armored vehicle at ordnance velocities.
Figure 1 shows density maps from a full geometry hydrocode
simulation during the penetration phase. Though the mesh is
coarse, the model manages to deliver an image of essential shock
distribution as shown in Figure 2. It also helps to visualize
structurally vulnerable areas even though no low frequency
structural modes are observable yet. A subsequent finer resolution
simulation then focuses near the front region. Pressure maps of the
penetration phase at t = 200, 650, and 1000 microseconds are
shown in Figure 3.

A successful and efficient coupling requires a transition time
around which element (cell) deformations and stress levels first
become appropriate for the structural code. Too early of a coupling,
at shock pressure levels well above the yield stress, might lead to
numerical instabilities (either due to limitations in constitutive
equations or due to severe element distortions). Too late of a
transition would waste computational resources. Figure 4 shows the
initial ABAQUS stress distributions after an early handover at 200
microseconds. The structural code can handle the transition
mechanically but the time steps go down drastically to 0.1
microseconds, one tenth of the hydrocode time increments, possibly
due to reasons cited above.

In contrast to this premature transition, the coupling at 650
microseconds is more promising (Figure 5) and structural code time
steps increase compared to hydrocode time increments. Increased
cell (element) size and consequently larger time steps are the
expected benefits of the transition to the structural code. Indeed a
Von Mises map at 5 and 12 microseconds after the handover (Figure
6) shows a relatively smooth continuation.

Another check for a successful coupling is to let the hydrocode
and the structural code run for a short time interval At after the
transition time tl, and compare the results at time t 2 = tl + At. If
the results are comparable, the transition time and domain are
appropriately selected. A successful comparison indicates a stable
handover and validates the coupling process. Utilization of this
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technique is certainly facilitated by automated handling of the
mapping between codes.

IV. APPLICATION OF THE METHODOLOGY TO LETHALITY
ASSESSMENT STUDIES

In a recent BRL report, Walbert 141 elucidated reasons for
incorporating ballistic shock effects in vulnerability/lethality
analysis. Non-perforating impacts where substantial momentum
transfer is involved are one of the primary examples for such a shock
and late time structural damage analysis. The assessment of the
Energy Deposition Lethality (EDL) could be based on the presented
methodology. For a specific projectile/target configuration, one
needs first to establish the set of perforating impact shotlines. For
these cases, no further EDL analysis is necessary. For non-
perforating impacts, one utilizes a Standard Damage Assessment
List (SDAL) and selects components vulnerable to shock/structural
effects. Then, depending on the mission requirements of the
armored vehicle for non-perforating shotlines, a set of critical
impact configurations could be identified for further EDL analysis.
For these limited number of cases then, with the help of the present
coupling methodology one can compute probabilities of kill (Pk)
depending on total specific impulse delivered and distance of critical
components from the impact area.
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C)

Figure 1. Density maps from the coarse mesh hydrocode
simulation on the symmetry plane at a) t =0 psec,
b) t = 700 psec, c) t = 1100 psec

a)

b)

Figure 2. Pressure maps corresponding to density maps given

in a) Fig. lb and b) Fig. ic.
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a) ~4

b)

C)

Figure 3. Pressure maps from the finer mesh hydrocode
simulation on the symmetry plane at a) t = 200 psec,
b) t = 650 psec, and c) t = 1000 psec
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CONTINUUM AND MOLECULAR MODELS
FOR RUBBER VISCOELASTICITY

Arthur R. Johnson
Ross G. Stacer

Army Materials Technology Laboratory
Watertown, MA 02172

ABSTRACT

In the linear theory of viscoelasticity, the modulus is
defined as the time-dependent proportionality constant
relating stress to strain, independent of strain level.
Although this definition is useful mathematically and
provides a wide range of predictive capabilities, it is
almost never observed in real polymeric materials. For these
materials, mechanical behavior is both time and strain-level
dependent. This nonlinear response to imposed deformations
is discussed in this paper in terms of two models, one based
on continuum mechanics and the other on molecular dynamics.
First, we review a large deformation continuum mechanics
model recently presented for nearly incompressible
materials. Large cyclic deformations of filled elastomers
are modelled in this approach using viscohyperelastic
internal solids. Secondly, we present an analysis of the
same behavior from the perspective of molecular mechanics.
This later model is based upon a topological constraint
system in which relaxations between entanglement junctions
are treated via polymer tube dynamics. Finally, it is shown
that a close relationship exists between the predictions of
these two models.

INTRODUCTION

Response properties of elastomers are extremely

dependent upon material deformation history [1-5]. This

history dependent behavior is generically termed the Mullins

effect. Although a number of definitions and observed

phenomena are associated with the Mullins effect, it is most

often discussed for crosslinked materials in terms of

stress-softening and subsequent recovery. The latter feature

is important since it.differentiates the process from

micromechanical damage and plasticity effects, to which the
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process is often erroneously attributed. This is because

given appropriate conditions, in terms of both time and

temperature, an eiastomer can be expected to recover most,

if not all, of its original properties [1,2]. The rate of

recovery, however, can vary significantly depending on which

property is under consideration [6]. Other observational

features of the Mullins effect which have been investigated

include extension beyond earlier cyclic limits [2,3], change

in volume when nonreinforcing fillers are used L2,7,8],

alternate loading histories [9], and the role of various

formulating ingredients [2].

A large deformation computational scheme has recently

been proposed [10,11] which models these behaviors as a

continuum. The one dimensional model was shown to predict

literature data, and finite element analyses were carried

out to compare the one dimensional model to its

corresponding finite element model. This nonlinear model was

first constructed for large cyclic deformations of a filled

elastomer by superimposing a hyperelastic solid with a

special internal viscohyperelastic solid-fluid [11]. Since

filled elastomers are often slightly compressible, total

Lagrangian minimal potential energy finite element models

were developed even earlier and used to predict their static

deformations [12,13].

In addition to briefly reviewing the above model, we

also introduce in this paper a molecular dynamics model

developed in parallel to account for many of the same

phenomena. This approach is based on the reptation/tube

model of polymer dynamics [14,15]. In this model,

deformation behavior of the polymeric network is divided

into two components. The first arises from the affine

deformation of the network junctions while the second

embodies network inhomogeneities such as entanglements,

unattached chain ends, and segments between crosslink sites

sufficiently far away from said sites that they relax

independently. Contributions of these latter features to the
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overall deformation behavior are combined and modelled by a
simple topological constraint system. Within this system,

individual chain segments are allowed to adjust or
equilibrate themselves to a reduced energy state via

reptation, thus relaxing their deformed length. A solution

for the response of such a network under constant strain

rate is developed.

Finally, both the continuum and the molecular models

are brought together and their respective responses

compared. It is the purpose of this paper to show that both

lead to complementary rather than conflicting predictions,

with the continuum model deemed more appropriate for

structural analysis and the molecular model better to guide
the development of new materials with superior properties.

CONTINUUM MODEL

We begin our brief review of the continuum model of
Johnson and Quigley (10,11i by considering the nonlinear

Maxwell model made from the four elements shown in Figure 1.
The stretch ratio and energy function for the nonlinear

elastic element in the middle leg are XE and WE,
respectively. A nonlinear loss element with energy function
WL is shown on the right. Constants to be used in the flow
laws for the two nonlinear dashpots are q and TL' At any

time t the total stress a is given by

o(t) = aE (t) + a (t) + a L(t))

where oE and aL are the stresses in the nonlinear elastic
and loss elements, respectively, and a1 is the stress
obtained from the nonlinear dashpot on the left side.

We assume that the nonlinear elastic and loss elements

have their stresses determined from hyperelastic energy

functions. The loss element's undeformed length is assumed

to change according to a flow law described in Reference 10.

595



The dashpot in series with the loss element is used to

symbolically indicate a flow law is active. In the case of a

quasistatic deformation, the leg without a dashpot provides

the expected nonlinear (long term) hyperelastic response.

After a suddenly applied step displacement (relaxation test)

the hyperelastic loss element provides the additional

viscous stress above the long term stress. For a creep test

or a continuous moving boundary, the single nonlinear

dashpot on the left side in Figure 1 provides an additional

viscous stress.

In this paper we use the three nonlinear Maxwell legs

described above to model the exponential-rate stretching

experiment of McGuirt and Lianis [16] for an SBR elastomer.

Computations were first made with q = 0.0 for which the

maximum difference between the computed stresses and those

reported by McGuirt and Lianis was about 0.138 MPa.

Selecting q = 2/3 s reduced the errors and the result is

shown in Figure 2. Good agreement is found between the

viscohyperelastic Maxwell model and the literature data. The

material constants describing the model's elements were

determined by standard methods (Mooney plots, etc.). Data

required included a series of step relaxation tests to

determine WL, WE and L' along with several different

constant strain-rate tests or a single variable-rate test

(to select q for the range of stain-rates expected). Next,

we describe a finite element extension of this rubber

viscoelasticity model.

The one dimensional model described above can be

converted to a three dimensional solid model by superposing

a nonlinear loss solid onto the hyperelastic storage solid.

This requires the reference shape of the loss solid to

change with t according a simple flow law. We use the loss

solid's reference shape, the storage solid's deformed shape,

and the loss solid's hyperelastic energy function to compute

viscous forces (or stresses) on the storage solid's deformed

shape similar to the one dimensional case [10]. Additional

596



WL
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Figure 2. - Uniaxial Exponential Rate Loading at 0.0425 sec".
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viscoelastic or loss forces acting on the storage solid's

deformed shape are determined through equations describing

the damping in the nonlinear dashpots.

For a two dimensional finite element model, consider

the solid configurations shown in Figure 3. The coordinate

systems {XI, X21, {Y 1 (t), Y2 (t)} and {x 1 (t), x 2 (t)} describe

the reference configuration for the hyperelastic storage

solid, the reference configuration of the hyperelastic loss

solid, and the deformed configuration of the elastic solid,

respectively. Indicated time dependencies illustrate that

the shape in the latter two coordinate systems change with

t. Next, these shapes are discretized using the finite

element method with the nodal locations indexing them given

as in Figure 3, where the i subscripts refer to the node

number. A complete description of the governing equations

can be found in References 10 and 11 along with several

analyses to compare the one dimensional solid-fluid model to

its corresponding finite element version.

MOLECULAR MODEL

As mentioned in the Introduction, deformation of a

polymeric network can be discussed from the perspective of a

two-component system. Figure 4 illustrates how such a system

would respond to an instantaneous step strain in simple

extension. The left side of the figure shows the deformation

of the unit cube with a single chain attached at two

junction (crosslink) sites. In the kinetic theory of

rubberlike elasticity [17], an assumption of affine

deformation of these sites leads to an expression for the

nominal stress

a = 2vkT(X - AX 2) (2)

where v is number of crosslink sites per unit volume or
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X2 Y 2(t) x2(t)

XCI 1(t) xl(t)

Original undeformed Undeformed loss Deformed elastic
configuration. solid. solid.

Figure 3. - Two Dimensional Configurations.

crosslink density, k is Boltzmann's constant, and T is

temperature.

For purposes of this discussion, the chief limitation

of Equation (2) is that it describes an ideal equilibrium

condition and does not consider any time-dependent

relaxation processes that may occur at other locations
within the network. These relaxation processes are

highlighted in Figure 4 through the deformation of the unit
sphere, shown to the right as a chain segment responding

independently of network junction after the initial

deformation. In physical terms, these relaxations arise from

a variety of network inhomogeneities including

entanglements, loose chain ends, unattached molecules, etc.

We combine all these processes together mathematically by

defining an effective crosslink density v e for introduction

later into equations similar to (2) via a volume rule of

additivity

e =c + Vp (3)
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Figure 4. - Response of Unit Cube to Instantaneous Step-Strain,
Illustrating Relaxation as Function of Time at Locations
Away from Crosslink Sites.
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where the subscripts c and p refer to chemical and physical

(nonpermanent) crosslinks, respectively. From the brief

description of the model given above, we see that

describes a time independent process while v is associated

with time dependent effects.

An idealized response to cyclic deformation at a

constant rate of strain for a single chain segment allowed

to relax within its tube and thus representing molecules

contributing to vp is illustrated in Figure 5. The tube, or

topological constraint system, is defined in the customary

fashion after DeGennes (14] and Edwards [15]. The arc length

of the tube is designated as L while X denotes the arc

length of the constrained chain segment. At t = 0, both tube

and segment are in their equilibrium state with L = Z

Upon imposition of the triangular strain pulse, we assume L

deforms in an affine fashion

L(t) = (;t + 1)L . (4)

Since the chain segment is not anchored at the tube ends, it

immediately begins to relax within the deforming tube.

Consequently, for finite rates of strain, at the conclusion

of the first half cycle, L°0 < £t') < L(t'). This relaxation

process continues during the first unloading cycle and as a

result when the strain returns to zero, Z(2t') < £ . Given

sufficient recovery time, tr > i where T is the

characteristic relaxation time for the chain, k will again

approach k . However, for times shorter than x, a new

reference condition is established which propagates through

subsequent cycles. The resultant response curves for £(t)

display all the features for the stress-softening behavior

discussed at the beginning of this paper.

Quantification of the behavior illustrated in Figure 5

may be obtained by assumption of the mathematical form of

the hierarchical constraint release process in response to

an instantaneous step strain corresponding to Z
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0(t) = 2 + (Z - 0 )exp(-t/x) (5)
0 0

which merely states that the length of the chain segment

decays exponentially from k to k0 with relaxation time T.

Following the classic derivation of the Hereditary Integral

of linear viscoelasticity [18,19], Equation (5) may be used

to construct a series of infinitesimal step strains which

approximate the relaxation that occurs continuously during a

constant strain rate test. This approach leads to an

ordinary differential equation with the general solution

given by Equation (6).

k(t) = C(l + ct)exp(-t/T) + k0 /[Eg(t)] (6)

where g(t) = /T- 6/l+ 6t).

Substituting this time dependent chain length into

Equations (2 and 3) gives

2 2
G(t) = ½2 kT(X - l/Xc) + AV kT[X (t) - 10X (t)] (7)c c c 2p p p

where X denotes the affine deformation of the networkc
junctions, and X p(t) = k(t) quantifies the time-dependent

relaxation processes occurring away from the fixed junctions.

Figure 6 shows the results of applying this model to stress

softening in a polybutadiene elastomer at five temperatures

as indicated. Experimental data [20] are from a uniaxial

tensile cycle consisting of N = 10 regular, triangular
-i

strain pulses with strain c = 0.02 and rate = 0.05 s

Individual data points represent peak stresses expressed as

a percentage of the corresponding stress during the first
-26 -3

cycle. Predictions of the model for v = 1.30 x 10 m
c

and • = 0.24 x 10-26 m-3 are shown as continuous curves. As

can be seen, good general agreement exists between the model
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and the experimental data, with the best fit occurring at the

lowest temperature. Differences between the individual

temperatures were obtained by fitting reasonable values [21]

of i for the material. Fitted values ranged from a high of T

= 36 s for T = -601C to r = 4 s for T = 20 0 C.

ANALYSIS OF STEP-STRAIN RELAXATION

Although at first glance the two models discussed above

may appear incompatible, further study reveals many

similarities in their predictive capabilities. Space does

not allow a complete comparison for a variety of deformation

modes so the presentation below will be limited to the case

of a simple step-strain relaxation. For generalization

purposes, we introduce the first strain invariant

2 2 2
I, = X + 1 2 + X3' (8)

Introduction of I1 into the Neohookean version of the

continuum model discussed above [10,11i gives an internal

energy density function

W kT(Ic - 3) + 1vpkT(Il - 3) (9)

where Ilc is the first invariant of the deformation mapping

between the original reference configuration and the

deformed elastic solid (chemically crosslinked molecules),

and Iip is the corresponding deformation mapping between

the time-dependent reference loss solid (v p molecules) and
the deformed elastic solid (see Figure 3). Likewise, a

similar internal energy density function for the molecular

model may be expressed as
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W = VckT(Ilc - 3) + A\pkT(Ip - 3) (10)

where Ilp (= Ilp) is a local measure of the time-dependent

first invariant of the deformation mapping for the convected

physically crosslinked molecules, see Figure 4.

Application of a step strain to a fully relaxed

material yields

W = AkT(\c + v H)Ilc - 3) (11)

from both Equations (9 and 10) since X (t = 0+) = Xc = thepc
applied stretch. Also, as time becomes large (infinite) we

have Xp ÷ 1 for both models and both internal energiesp
become

W(t -÷ CO) = 1VckT(I - 3) (12)2c 1c

Thus, both the continuum and molecular models will have the

same shear moduli (vckT and v pkT) which are determined by

step strain relaxation experiments [10].

The models do not, however, imply the same recovery

mechanism for the molecules contributing to v p. In the

continuum mechanics model, it is assumed that they adjust

their structure with time to adapt to the macroscopic

deformation configuration. This is accomplished in the model

by applying deformation forces to them (i.e., to their

time-dependent reference solid-fluid geometry (10)).

Conversely, the molecular model assumes that the vp
molecules deform immediately in response to the macroscopic

strain and then relax back to their equilibrium energy state

(or original contour length) with time according to Equation

(5). The continuum model's relaxation equation for a tensile

step strain test is
= * A22

dk/dt = -(Z I/ ) (A - (I/A)]/[2A + (1/A 2) (13)
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where A = L/I

Given £ in a step strain experiment, Equations (5 and

13) determine the length of the molecules free to

reestablish their equilibrium state, Z(t), with time for the

molecular and continuum models, respectively. Then, Equation

(7) is used with X = L/Z and X = k/Z for both models toc p
determine the time-dependent stress. Figure 7 contains plots

of the predictions for the physically crosslinked network of

Equations (5, 7 and 13) for a step strain relaxation

experiment. As can be seen, both models produce the

characteristic exponential decay in stress with time.

REFERENCES

1. F. Bueche, "Physical Properties of Polymers," Wiley, New
York, 1962.

2. L. Mullins, Rubber Chem. Technol. 42, 339 (1969).
3. A.N. Gent, J. Appl. Polym. Sci. 18, 1397 (1974).
4. R.A. Schapery, Eng. Fracture Mech. 25, 845 (1986).
5. C.M. Roland, J. Rheol. 33, 659 (1989).
6. R.J. Farris, "Recovery of Strain Induced Daamage in

ANB-3066 Propellant," AFRPL-TR-75-11, 1975.
7. R.J. Farris, Trans. Soc. Rheol. 12, 315 (1968).
8. H.P. Kugler, R.G. Stacer and C. Steimle, Rubber Chem.

Technol. 63, 473 (1990).
9. G.B. McKenna and L.J. Zapas, Rubber Chem. Technol. 54,

718 (1981).
10. A.R. Johnson and C.Q. Quigley, Rubber Chem. Technol. 65,

137 (1992).
11. A.R. Johnson, C.Q. Quigley, C. Cavallaro and K.D.

Weight, in "The Mathematics of Finite Elements and
Applications VII - MAFELAP 1990," J.R. Whiteman, Ed.,
Academic Press, New York, 1991.

12. I. Fried and A.R. Johnson, Comput. Meths. Appl. Mech.
Engng. 67, 241 (1988).

13. I. Fried and A.R. Johnson, Comput. Meths. Appl. Mech.
Engng. 69, 53 (1988).

14. P.G. DeGennes, "Scaling Concepts in Polymer Physics,"
Cornell, Ithaca, 1979.

15. M. Doi and S.F. Edwards, "The Theory of Polymer
Dynamics," Oxford, 1986.

16. C.W. McGuirt and G. Lianis, Trans. Soc. Rheol. 14, 117
(1970).

17. L.R.G Treloar, "The Physics of Rubber Elasticity, 3rd
Edition," Oxford, 1975.

18. W. Fifgge, "Viscoelasticity, 2nd Edition,"

606



springer-Verlag, New York, 1975.
19. N.W. Tschoegl, "The Phenomenological Theory of Linear

Viscoelastic Behavior," Springer-Verlag, New York, 1989.
20. R.G. Stacer, A.R. Johnson and Ch. Hibner, in

preparation.
21. D.J. Plazek, G.-F. Gu, R.G. Stacer, L.-J. Su, E.D. von

Meerwall and F.N. Kelley, J. Mater. Sci. 23, 1289
(1988).

.00750

.00625

E) Molecular Model r = 30

.00500 - - Continuum Model il = 38

.00375 -

.00250 -

.00125 -

0.-

0. 25.0 50.0 75.0 100. 125. 150.

Time (sec)

Figure 7. - Predictions of Continuum and Molecular Models of

Instantaneous Step-Strain Responses

607



{1,2}-ORDER THEORY FOR HOMOGENEOUS
ORTHOTROPIC SHELLS

T. Tsui and A. Tessler
Mechanics and Structures Branch

U.S. Army Materials Technology Laboratory
Watertown, Massachusetts

Nomenclature

A1 , A2  surface metrics
Aij membrane shell rigidities
Bij membrane-bending coupling shell rigidities
Cij elastic stiffness coefficients
Dij bending shell rigidities
Gi, transverse shear shell rigidities
Co the class of continuous functions possessing

discontinuous derivatives at element nodes
C- 1  the class of continuous functions that are

discontinuous at element nodes
I, inertial coefficients
G shear modulus
L length of clylider
Kcyl stiffness matrix for cylindrical shell
MA1t mass matrix for cylindrical shell
a cylindrical shell radius
2h shell thickness
m, n axial and circumferential wave numbers
u,v midplane displacement along a, and a 2 directions
u1 , u2 , u 3  orthogonal displacement components
w, wi components of the transverse displacement
X, O, (cylindrical coordinates
t time variable
SIi normalized frequency
6 variational operator
fij, %ij strain and curvature components
0, (i = 1,2,or x,0) bending cross-sectional rotations

609



C dimensionless thickness coordinate
1ij , Tij stress components

a mir/L
al, a 2, C orthogonal curvilinear coordinates
p material density
Loi circular frequencyo differentiation with respect to time

(,i partial differentiation with respect to
ai spatial coordinate

1 Introduction

The increasing applications of laminate composites in the design of various
thick-section shell type structures necessitate the need for the develop-
ment of a simple and accurate theory for the analysis of thick shells. The
theory should include the effects of transverse shear and transverse nor-
mal deformations which can be particularly pronounced in thick shells and
those subject to higher vibrational modes. Such a theory should also be
amenable to finite element approximations.

In the case of thin shells, the refined two dimensional theories, which
include the initial curvature effect (e.g. the Sanders - Koiter theory [1-
2]), provide good predictions for shell response. When applied to thick
shells, however, significant errors may result. This is because the shell
deformations are constrained by the Kirchoff - Love assumption ignoring
transverse shear and transverse normal deformations.

Numerous higher-order theories have been proposed for the analysis
of thick laminated shells (e.g. [3-7]). These theories either neglect the
effects of transverse normal deformation or their accuracies as well as com-
putational simplicity and suitability need to be demonstrated. In certain
relatively simple cases, three-dimensional elasticity solutions have been ob-
tained [8,9].

The focus of this effort is to derive an accurate general shell theory for
the analysis of thick orthotropic shells which is particularily suited for finite
element application. The methodology is an extension of the {1,2}-order
plate theory by Tessler [10-12]. The shell theory accounts for the effects of
transverse shear and transverse nomal deformations.

The theory is evaluated via an analytic solution for a free vibration
problem of isotropic cylindrical shells. The natural frequencies of vibrations
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are determined for a wide range of geometric parameters and the results
are compared with the three-dimensional elasticity solutions.

2 Foundation of {1,2}-Order Shell Theory

Let (al, a 2, C) denote the orthogonal curvilinear coordinate system of the
shell element where a, - and a 2 - curves are lines of curvature on the refer-
ence midsurface of the shell and ( are lines perpendicular to the midsurface
( C = 0). The principal radii of curvature of the reference surface are R1
and R2, and the thickness of the shell is 2h.

The present {1,2}-order shell theory is a direct analogue of the plate
theory of Tessler [10 - 12]. The displacement components are expanded in
terms of the dimensionless thickness coordinate 6 = (/h E [-1,1] and the
seven kinematic variables {u, v, w, 01, 02, w1 , w2} as:

ui(a,,a 2,0,t) = u(al,a 2, t) + h6 1(cl, a 2,t)

u2(al, a2, •,) = v(ai, a 2, t) + h6O2(ai, a2, t) (1)
U3(al, a2, t) = w(ai, a2, t) + 6w1(al, a2, t)

+ ( - 1/ 5) W2 (a1,,a2, t)

The displacement expansions allow the inclusion of both transverse shear
and transverse normal deformations.

The strains are related to the stresses through the 3-D Hooke's law as

. = Cc (2)

where C = [Ci,] is a 6 x 6 matrix of elastic material constants, and a, and
c are vectors of stress and strain components, respectively.

The shell formulation employs the following shell strain and curvature
variables.

C= [=, o., (n, 1o0o 1 K, 1, ], yo = [p,, u,] (3)

where (co, CO, I C), (00, 20, o, and y°) represent the normal and shear strains
of the reference surface; nK, n°, and tco denote the changes of curvature of
the reference surface; 0 and # indicate the twist of the reference surface.
The relationships of these quantities to the kinematic variables in (1) are
summarized in the Appendix.
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The inplane strains, obtained from (1) in accordance with three-
dimensional elasticity theory, are

ci = [4o + htci + h6°/RP + h2(ý 2 - 1/5)K°/Ri]/Lj (i = 1,2)

712 = (030 + h•f3')/L 1 + (032 + h6O3')/L 2  (4)

where Li = 1 + hl/Ri (i = 1,2).

The transverse shear strainyi (i = 1,2) and the transverse normal
strain En are respectively derived from independent quadratic and cubic
polynomial expansions. The coefficients of the polynomials are determined
by requiring the stress field to satisfy physical boundry conditions at the
top and bottom shell surfaces.

Tin(ai, a 2 ,±h,t) = an,C(aj,a 2 , ±h,t) = 0 (i = 1,2) (5)

and the transverse strain compatibility in the mean. This is achieved by
minimizing the following expressions with respect to the unknown expan-
sion coefficients:

minimize fhh {7/i -[A° + ýwjj + (62 _ 1/5)w2 ,i]} 2 A2L~d

(6)

minimize f h [c - (4 + 2ýhrco)

The resulting transverse strains have the form

"7i, = _(1 - ý 2 )[t°/Li (i = 1,2)
= 00 0(n E = S 2 C2 + 836n + 8401' + S0+5 + (7)

S6 K1 + 8714 + S8rn + 89#1 + S1002

where sj(ý) (j = 1,2,3, ... , 10) are cubic functions in ý [14]. The equations
of motion together with the natural boundry conditions are derived via
Hamilton's variational principle. The resulting two-dimensional variational
statement has the form

1i~ [T.,O + MT.. + QTy] adc2  8

-1('t, i,, zb, d,, d 2 , tl,, t62 ) - We(U, V, W, 01, 0 2 , WI, W 2 )}dt = 0

where K and W, denote the kinetic energy and the work done by exter-
nal forces, respectively; N, M, and Q are vectors continuing the shell
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stress resultants which are related to the shell strains (3) via the following
constitutive relation

M { } T D o ]{(}

0 o G to

where A = [Aij], B = [Bij], D = [Dij], and G = [Gij] are the shell
constitutive matrices [14].

3 Free Vibration of Cylindrical Shells

To evaluate the present { 1,2}-order shell theory, the free vibrations of in-
finitely long isotropic cylindrical shells are considered. The field equations
in the orthogonal curvilinear coordinate system (al, a 2, () are specialized
for the case of cylindrical shells [14]. The equations of motion in terms of
the displacement variables take the form

Allu,xx + Assu,oo/a 2 + (A12 + As 4)v,xo/a + B11 09,..

B550oe,o/a 2 + (B 12 + B5 4)O,.e/a + A1 2w,x/a+

A 13 wI,1/h + B13w 2,/h 2 = ph(Ioii + Ih0 9 )

(B5 4 + B12 )u,xo/a + B44v,•x + B22v,ee/a 2 + (D 45 + D 21)0o,xO/a+

D 440x,xx + D22Ox,eo/a 2 + (B22 - aG44)w,ola 2 + B32 wI,e/ha+

D 23w2,e/h2 a + G44(v - aO9)/a = ph(Uh111 + hI 20")

G55w,xx + G44w,eo/a 2 - A21u,x/a - (A 22 + G44)v,o/a 2 -

(B 21 - aG55)Oe,.Ia - (B 22 - aG44)0x,o/a 2 - A22 w/a 2 - A23 wI/ah

-B 23•w 2 /ah 2 = ph[Iozb + Ijtij + (-I0/5 + 12)t 2 l]

(A45 + A21)u,xo/a + A44v,xx + A22v,oe/a 2 + (B45 + B21)Oe,.O/a+
B 440x,xx + B220,oo a2 + (A 22 + G44)w,o/a 2 + A23 wI,o/ha+

B23w2,0/h 2 a - G44(v - a0x)/a 2 = ph(lo1 + I hO•)

(10)

Bilu,.x + B5ueo/a2 + (B21 + B45)v,xo/a + D 1I09,x.+

Dsso,ool/a2 + (D12 + D54)O,xo/a + (B21 - aG5)W •/a+

B3iwi,•Ih + D13w2,x/h 2 - G55O0 = ph(hIuii + h2 12jo)
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-[A 31u,. + A32 (v,o + w)la + A33 w,/h + B310o,. + B 320.,o/a+
Bw3W 2 /h 2]/h = ph[hti + I2 tbl + (-I/5 + 13)02]

-IB 13 U,x + B23(V,e + w)/a + B33 WI/h + D3100,. + D320.,O/a+

D 33w2 /h 2]/h 2 = ph[(-Io/5 + I 2)zib+

(-i1/5 + 13)Z52 + (Io/25 - 212/5 + / 4)wi2]

where Ii (i = 0,1,...,4) are constants [14].

For free vibration, the displacements are expanded in a modal series as
00

u(x, 0, t) = E Umn sin ax cos hnoeimnt
rn=n=l

00W(X,90,nt) = Z . mncosaxCSnnewmnt

m= n=
00

w(X, O,t) = Wimn COS aX COS nOes
m=n=l

0o

O0(x,O,t) = Z onSinsax sinOe iL'' (11)
mr=n=l

Oe(x,9,t) = Z 4 ,mn sin crx cos nO•e'twm
mr=rn= 1

00

wi(x,O,t) = Z win cosaxcosn'°eiwm"t

m= n= l

For the special case n = 0, the displacement expansions are obtained by
interchanging sinn0 and cosn0 in (11). Substituting (11) into (10), results
in the eigenvalue matrix equation

(KeY - w2 Mcyl)A = 0 (12)

with
AT - {Umn, Vmn , Wmn, dmn, O )mni , Wren, WVn}

where the coefficients of the stiffness KcV1 and mass Mcyj matrices are
summarized in [14].

Tables 1-4 show comparisons between the natural frequencies predicted
by the present theory and the three dimensional elasticity solutions [9] for
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two circumferential mode numbers. The frequencies, £Zi = wi/w,,f (i =

1, 2, 3, 4) where w,.f = 7r Vr /2h, correspond, in the ascending order, to
the flexural mode, associated with large radial displacements; axial shear
mode, associated with large axial displacements; thickness-shear mode,
associated with motions in the axial directions, and thickness-stretch mode
with predominantly radial displacements [9]. The results are seen to be
in excellent agreement with the exact solutions except for the thickness-
stretch mode where the present predictions are consistently higher than the
exact solutions. The largest error is about 10% corresponding to a thick
cylinder (2h/L = 0.40 and 2h/a = .3) and n = 3. Note that the thickness-
stretch frequencies cannot be computed by the {1,0}-order theories.

Table 1: Normalized Natural Frequencies for Homogeneous Isotropic Cylinders
2h/a = .01, m=1, n = 1

2h/L 0__ 02 ___3 n__4

_ Exact Present Exact Present Exact Present Exact Present
.01 .0046 .0046 .01069 .01069 1.0001 1.0001 1.8706 1.8708
.10 .0160 .0159 .1001 .1001 1.0050 1.0050 1.8498 1.8726
.20 .0577 .0576 .2000 .2000 1.0198 1.0198 1.8121 1.8779
.40 .1989 .1973 .4000 .4000 1.0771 1.0771 1.7520 1.9020

Table 2: Normalized Natural Frequencies for Homogeneous Isotropic Cylinders
2h/a = .01, m=1, n = 3

2h/L Q_ 02 f23 0_ 4

_____Exact Present Exact Present Exact Present Exact Present
.01 .0026 .0026 .0142 .0142 1.0001 1.0001 1.8704 1.8709
.10 .0160 .0160 .1005 .1005 1.005 1.005 1.8496 1.8726
.20 .0579 .0577 .2002 .2002 1.0199 1.0199 1.8120 1.8779
.40 .1990 .1974 .4001 .4001 1.0771 1.0771 1.7520 1.9021

Table 3: Normalized Natural Frequencies for Homogeneous Isotropic Cylinders
2h/a=.3, _m=1, n1= 1

2h/L _ I 0__ 2 f2_3 f2_ 4

__Exact Present Exact Present Exact Present Exact Present
.01 .0012 .0012 .0972 .0972 1.0083 1.0086 1.8583 1.8676
.10 .0616 .0616 .1648 .1648 1.0183 1.0185 1.8423 1.8693
.20 .1266 .1269 .2375 .2375 1.0383 1.0381 1.8100 1.8747
.40 .2440 .2440 .4142 .4142 1.0970 1.0965 1.7551 1.8992
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Table 4: Normalized Natural Frequencies for Homogeneous Isotropic Cylinders
2h/a=.3, m=1, n=3

2h/L Q_ 1 02 0__ 3 04

Exact Present Exact Present Exact Present Exact Present
.01 .0957 .0951 .2875 .2875 1.0455 1.0458 1.7865 1.8814
.10 .1064 1.060 .3095 .3095 1.0517 1.0519 1.7812 1.8833
.20 .1455 .1451 .3613 .3612 1.0692 1.0693 1.7681 1.8895
.40 .2792 .2772 .5018 .5017 1.1303 1.1305 1.7439 1.9171

4 Concluding Remarks

A general shell theory of order { 1,2 } for homogeneous orthotropic shells was
developed following the basic methodology established in [10]. Parabolic
transverse shear and cubic transverse normal strains were derived allowing
vanishing shear traction boundary conditions to be satisfied. These strains
are also compatible in the least-square sense with those obtained directly
from displacements. The governing equations were formulated in terms of
an orthogonal curvilinear coordinate system which permits the analysis of
various types of shells such as circular cylindrical, spherical, conical, etc.
Furthermore, the initial curvatures were retained throughout.

The shell theory results for the natural frequencies of free vibration
infinitely long, isotropic cylindrical shells were found to be in close agree-
ment with the three-dimensional elasticity solutions. The theory provides
a convenient framework for the development of simple and computationally
efficient finite element models. In addition, it serves as a foundation for a
laminate shell theory to be addressed in a future effort.
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Appendix: Definitions of Shell Strain Variables

o= u,,/A, + vA,, 2/AIA 2 + w/R,

f2 = v,2 /A2 + uA 2,1/AiA 2 + w/R 2
00 = wj/h

S= v,1/Al - uA,, 2/AlA 2

= u,2/A 2 - vA 2,/AA 2
K0 = 01,1/A 1 + 02A 1,/A 1A 2x

K0 = 02,2/A 2 + 01A2,1/A1 A2
K0 2on w2/h2

= 02,1 /A1 - 01A1,2/AA2

02 01, 2 /A 2 - 02 A2 ,1 /AlA 2
0 = -u/RI + 01 + w,1/A1
0

1o = -v/R 2 +02 + w,2/A 2

where A, and A2 are the surface metrics
A• = r,i- , A= ,2

r is the position vector of a point on the middle surface of the shell.
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PLY CRACKS AND LOAD REDISTRIBUTION
IN LAMINATED COMPOSITES
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INTRODUCTION

Consider a laminate coupon under uniaxial loading, say for example, tension.
If the laminate contains one or more laminae with fiber direction inclined to the
direction of loading (300 to 900), a nonlinear response of the coupon is often
observed. If these off-axis laminae are considered to be elastic but susceptible
to deterioration caused by constrained transverse cracking, then the decrease
in strain energy U (= pi, yp being the Helmholtz free energy) or increase in
complementary energy (Figure 1) from their elastic values may be considered to
be used in the creation of ply cracks.

Phenomenological as well as fracture mechanics based approaches have
been used in the past to model stiffness loss in cross ply and angle ply laminates
due to transverse ply cracks. In these approaches, the change in strain (or
complementary) energy is estimated via approximate stress analyses or other
assumptions. In the phenomenological model an additional assumption of dilute
concentration of cracks is usually employed. In this work we first discuss some
phenomenological considerations for dilute as well as nondilute concentration of
cracks. Next we report some results from mechanics based models and finite
element calculations to choose some constants and functions required in the
phenomenological model. Finally we compare results from the model with test
data and other calculations reported in literature.

PHENOMENOLOGICAL CONSIDERATIONS

Phenomenological approaches for modeling growth of distributed micro-
cracks of many orientations (and the resulting stress-strain response) have been
proposed [1, 2]. The model described in [1], which is based on strain formula-
tion, has been modified [3, 4] to consider dilute concentration of such micro-
cracks parallel to fibers in each lamina employing a stress formulation (Figure 1).
Nonlinear responses of angle ply laminates predicted by the use of incremental
laminate analysis have been correlated with test data in the same works. These
results and other analytical and experimental studies [5-10] indicate that
increasing number of ply cracks perpendicular to the planes of lamination is the
dominant mechanism governing the stiffness loss. These cracks may start as
microcracks but very quickly grow in the z-direction to the full thickness of the
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ply (or layer) as shown in Figures 2 and 3 and become quite long in the x-
direction (average length b > > 2a). Generation of increasing number of ply
cracks in cross ply laminate coupons under tensile load occurs due to cleavage
type fracture under transverse tensile stress. In general, in-plane shear stresses
may also exist in a ply. The phenomenological formulation in [4] can be
extended to consider the general situation of a balanced midplane symmetric
laminate under in-plane loading. In a laminate coupon loaded in tension,
plycracks are likely to appear in all the layers, whose fiber directions are inclined
to the direction of loading. Figure 3 illustrates the situation in each of the
cracked layers, the fiber direction of the layer coinciding with the x-axis in the

figure. AUL, the change in the energy density in a representative volume
element of a laminate (decreases in strain energy or increase in complementary
energy) due to a system cracks in one layer (one or more plies lumped together)

with thickness fraction Vc can be written as

AUL = Vc AUc (1)

AUC - 1 * {C102fl (w*) + C 2  f2 (W*)

0 0 ( 2 )

+ 2C 3 aoT0 f3 (6*)}

In equation (2) Ci (i = 1, 2, 3) are constants with a dimension which is the

inverse of stress or modulus. U0 , To are the transverse tensile and in-plane
shear stresses in the layer in absence of cracks. If a strain energy formulation
is to be employed, these stresses should be expressed in terms of average
laminate strains. On the other hand, for evaluating change in complementary

energy they should be evaluated from average laminate stresses. fi (i = 1, 2,

3) are nondimensional functions of w * , which is a nondimensional measure of
the loss in load bearing volume or the crack density in the layer. Replacing these
functions by unity gives us the form of the energy change due to dilute
concentration of cracks discussed in [3, 41, which is a modified version of the
expression suggested in [1] involving squares of the strains on the crack planes

instead of the stresses a, T., Without any loss in generality we can, therefore,

consider values of these functions to be equal to unity when w* = Oand

further choose w * as
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w*= aw (3)

w =a/1 (4)

where 2a = thickness of the cracked layer
I = average spacing of cracks perpendicular to crack planes,

i.e., in direction y (Figure 2)

a = b/B, the ratio of average length of cracks to the spacing
in x (fiber) direction

We note that for large b/a, most of the load near a crack is transferred to

the adjoining layers (Figure 2) and for equally spaced cracks w * is a measure
of the assumed loss of load bearing volume (denoted by the shaded area in
Figure 3 multiplied by b) of the cracked layer

w * = (2a )2 b/2alB (5)

In cross ply laminate coupons under tension, the ply cracks usually grow

through the full width of the coupon. Thus, one may chose a = 1 and

w* = w = a/1 (6)

On the other hand when in-plane shear stresses dominate (as in (_45°)ns
coupons under tension), microcracks start at an angle to the xz plane (since
maximum tensile stresses are not perpendicular to the fibers) and there is not
much evidence to show that the cracks grow to the full width before final failure

and, therefore, a is expected to be less than unity.

In a phenomenological model, the constants Ci and the functional forms of

fi (w *) are estimated by fitting predictions to test data. Effective (reduced)

laminate stiffnesses Ai. for a balanced symmetric laminate containing N

cracked layers can then be obtained as (Ei, i = 1, 2 and y are extensional and
shear strains)
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N k = 1 2
UL=U AU f (A,*, l+ 2A1 *EE

UL = U• k=1 (7)
+ .*E2 + A*V2)

+ A 2 e2+ A66

Each of the effective stiffness has to be evaluated by considering one specific

type of loading (for example, y 0, el = e2 = 0 for determining A6*).
k thAUL is the decrease in strain energy density due to the cracks in the k

cracked layer. UL and UL are the strain energy densities in the cracked and
uncracked laminate, respectively. Note that equation (7) is an approximate
result if cracks exist in many layers, since interaction of cracks in different layers
is not considered in equation (2).

To estimate the growth of cracks, the concept of strain energy release rate
has been proposed [1, 3]. According to this concept, a measure of the energy
release rate in a layer k is given by (the superscript k is omitted)

R - a(AUL) a(AU,) (8)
Vc aw* aw*

where AUL and AUc are given by equations (1) and (2) with fi(w *) = 1 (the

case of dilute concentration). Damage initiates when R reaches a critical value Ro
and a power law type relation can be used [ 1] to predict growth of cracks when
R exceeds Ro.

= A [(RR 0ý -

where the exponent A (usually small compared to unity) and the constant A can
be determined by fitting predicted stiffness loss [3, 41 (or crack growth) versus
applied load data to those measured in tests. It may be noted that equation (9)
simulates the reduction in the rate of increase in crack density with applied load.

It has been shown in [4] that if fi(w *) in (2) are decreasing functions of W* ,

then it is possible to model observed crack growth data by retaining fi(w * ) in

the expression for A Uc in (8) and using the criterion
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R = Ro (10)

Ro may be easily shown to be related to an average measure of critical strain

energy release rate (Gcr) used in linear fracture mechanics.

Ro A Gcr/a (11)

Equation (11) implies that thicker layers will crack easier than thinner ones,
which has been observed experimentally. Use of (10) and (11) in conjunction
with (8) is conceptually similar to fracture mechanics based models [7, 8].

USE OF MECHANICS BASED MODELS

Determining all the quantities required in the phenomenological model from
test data is a difficult task. Mechanics based approaches can be of some help
as discussed in this section. Since b > > a, the constants Ci can be deter-
mined by considering the crack energy (work done by the applied tractions on
the crack faces) for a single ply crack in the laminate which deforms in a quasi-
three dimensional manner, i.e., all displacements are independent of x coordinate
(Figure 2). Let us denote ad 1 1 and ad 1 2 as the average crack opening and
tearing displacements due to constant unit pressure on the crack faces. Also,
let ad 21 (note that d 21 = d 12 ) and ad 2 2 denote the same average displace-
ments due to applied unit in-plane shear traction on the crack faces, then the

crack energy W° due to tractions uO and ro can be written as

WO = 1 . 2a 2 . (d11 o + d 2 2 T° + 2d1 2 aOTo) (12)

2

The change in energy density for I - o is, therefore,

AUL W°'b (13)
2al *B

Using (12), (13) and (3) and comparing the result with (2) one obtains
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C1 = d 11 , C 2 = d 2 2 , C 3 = d 1 2  (14)

Similarly the functions f1(w *) can be estimated from the crack energy for
equally spaced cracks (with varying spacing f) in a layer in the laminate
undergoing quasi-three dimensional deformations as discussed above. The
average crack opening and tearing displacements under unit pressure will yield

values of Clfl(w*) and C 3 f3 (w*). C 2 f2 (w*) (and also C 3 f3 (w*)) can
be obtained from the solution for unit shear traction. It may be noted that
because of assumed quasi-three dimensional deformation state

fi(w*) = fi(w) = fi(a/2) (15)

We note that the constants Ci and fi(w) are determined from solutions of
crack problems in the laminate and thus quantify the process of load redistribu-
tion from the cracked layers to the adjoining layers for all crack densities. In the

crack problems discussed above (for determining f1 (w)), the boundary conditions
at y = ± 1/2 will be different, depending on whether one wants to obtain the

change in strain or complementary energy. For evaluation A Uc (equation (2)),
one may impose appropriate symmetry (for the problem of prescribed pressure)
or antisymmetry (for in-plane shear) conditions. For obtaining estimates of
change in complimentary energy, other boundary conditions have to be
prescribed.

Solutions of the crack problems for each of the layers which are susceptible
to cracking are required. Further, results will differ depending on the laminate.
However, some approximations have been suggested in [3, 4] for the case of
laminates with laminae which have fibers in two mutually perpendicular
directions (cross ply or ± 45 arrangement). For such laminates

C 3 = d 1 2 = 0 (16)

In this section we report some results for cracks in the 900 layers in (0/9 0 3)s
glass/epoxy and (0/90). graphite/epoxy laminates, compare with the estimates
obtained in [3, 4] and discuss some general nature of the required quantities
which may be useful in other situations. The ply properties used for calculations
are given in Table 1. Note that values of a for (0/903)s glass/epoxy and (0/90),
graphite/epoxy are 0.609 mm and 0.127 mm, respectively. The representative
volume element of length f containing one crack in the 900 layer (Figure 3) with
the uncracked 00 layers above and below it was modeled with a sufficiently fine
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mesh using rectangular four noded constant strain elements. Average crack

opening displacements were calculated for each case of loading (00 = 1, To = 0

for d1l and oo = 0, ro = 1 for d22). C1 and C2 were obtained from the

solutions when 1 20 a (o = .05).

Table 2 compares the values of C 1 and C 2 obtained from finite element

results and the estimates suggested in [3, 4]. The two values of C1 for
glass/epoxy are practically identical since the estimate is obtained by integrating
accurate values of energy release rates for various lengths (up to 2a) of cracks
in an isotropic layer located between two thin stringers reported in [11]. There-
fore, the estimation procedure using the results in [11] will be useful for
problems of a thick cracked layer sandwiched between two thin laminae.

For graphite/epoxy, the estimate of C1 ET (ET = transverse modulus of the
lamina) in [3, 4] is based on the assumption that the cracked layer is located
between two layers which are very stiff as compared to the cracked layer. The
finite element result is higher because of finite stiffnesses of the outer layers.
Therefore, if the outer layers are stiffer (or thicker) the value of C1 ET will be
between the two values in Table 2. However, if they are more flexible and/or
thinner, the value will be higher than 2.22 as evident from the result for
glass/epoxy. Finite element results for a few other cases will be helpful to

obtain accurate quantitative estimates of C1 for various cases. The results
given here show some trends.

The value of C 2 for graphite/epoxy estimated in [3, 4] is obtained for a

single crack in an isotropic medium with shear modulus GA, which is the axial
shear modulus of the lamina. The finite element result is slightly different
because the outer layers are of finite thickness. The transverse shear modulus
of the layers is also lower than GA, the axial shear modulus. We note that if

each of the outer layers is replaced by an isotropic layer with shear modulus GA

but of thickness h1 , which is GA/GT times the actual thickness, then we
obtain the case of a single crack in an isotropic strip. The modification of the

thickness is motivated by the fact the shear stresses 'xz in the original and

au 1  aul
modified layers are GT- and GA---, respectively. The stresses at the

az az1
outer surfaces and at the interfaces must be identical in the two systems and,

therefore, the coordinate z 1 in the modified system should be chosen equal to

z • GA/GT. With the modified system and using the results for an isotropic
strip, we obtain
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GAC2 = -- a+hl1 2 In [coS 2 ha (17)
17 1 aj 2(a+h1)]

The right hand side of (17) yields values of 7 and 1.69 for h-- oo (infinite

medium case in the estimate [3, 4]) and for the (0/ 9 0 )s laminate, modeled in
finite element calculations. The procedure described above can, therefore, be
used to obtain accurate values of C2 . We also note that for layers which are
well inside a laminate, C2 may be chosen equal to 7/2 GA.

The values of fi W (- fi(w *)) obtained from finite element results are
shown in Table 3. An approximate estimate of f (w) suggested in [4] is given
by

fi(wj) - tanh [•](18)

with

,81 = rT14V2(1 +vt) (19)

= 0.487 for vT = 0.3

The representation (1 8) yields the following limiting forms.

fi (w) - 1 ; -- 0

3 (0(20)

We calculated fl1 to fit (18) to the results in Table 3 and obtained

fl = 0.32 for (0/90)3s glass/epoxy (21)
= 0.419 for (0/90)s graphite/epoxy
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These values yield the product .81 C, for both systems given by

fl 1 C1 - 0. 9 /ET (22)

which implies that a residual stiffness of 10 percent of the original value will

remain at large values of w (of the order w - 2.0). Note that a complete loss

in stiffness implies fl1 C1 - 1/ET. Thus, if C 1 is known then f1 (w) can be

estimated pretty well by (18) and (22). At w = 0.5 the cracked layers retain
more than 20% of the original stiffness.

A fit of the form (1 8) can also be attempted for f2 (w) in the last column of
Table 3. However, a better fit may be obtained with

f 2 (w) = 22 In (chf#2 w) (23)
l2W

with

f2 2C2GA (24)

= 3.88 for graphite/epoxy

We note that f 2 has the correct limiting forms, f 2 = 1 for w = 0 and for

large w, C 2 f2 (w) - 1/GAw. The results are also valid for a single stack of

cracks in an isotropic medium. For this geometry, however, fl2 = u7 in equation

(23) and C 2 =/72 GA. At w = 2.0, about 3 percent of the original stiffness
of the cracked layers remains as per (23). However, substantial stiffness (of the

order of 40 percent) remains at w = 0.5, i.e., when the crack spacing is of the
order of the thickness of the cracked layer. It may be noted that under in-plane
shear the layers which have been considered to be uncracked are also
susceptible to cracking in yz planes. Thus, at comparatively high crack
densities, cracks in the two sets of layers will interact creating a complex
situation which cannot be modeled in the fashion discussed here. However, at
such a stage, delaminations are expected to develop at the interfaces which may
cause failure of the system.

Delaminations have been observed to grow from ply cracks in cross ply
laminates under tension and such delaminations can also contribute to stiffness
loss. When the layers adjacent to the cracked plies are very stiff, then a simple

627



estimate of additional reduction in strain energy density can be obtained by a
simple approximate model. We consider a cell of length f containing a single ply
crack (Figure 3) with two delaminations at each interface (one on each side of
the crack starting from the crack tip). We thus have four delaminations. Let e
be the length of each of these delaminations. If we assume the delaminated
parts of the cracked layer to be stress free, then the change in energy density
is given by

Ucd 1W C4o 2
CU -w 2 C~ 0

where
(25)

w2= aw 2 = a2e/,

C 4 -11
E-T

As discussed earlier, a may be chosen equal to unity. This term A U cd must be

added to A UC in equation (2) to evaluate the stiffness loss. We can also define

a strain energy release rate corresponding to delamination density w2 using a

concept similar to (8), which indicates that it will remain constant for all W2.

dActually, the expression for A U C is an approximate one and it is valid when e
comparable to a. Further, the addition of A U d to AUc is valid when e is small

compared to f. The expressions may be modified further, but we will not
pursue this here.

RESULTS

We made use of equations (1), (2), (6), and (7) to predict the ratio of
effective to original stiffness of the two laminates considered in the previous
section, when subjected to uniaxial tension. Values of Ci and fi (w) obtained
from finite element results (Tables 2, 3) were used. The results are compared
in Figures 4 and 5 with some test data [10, 12] and some other analytical
results. It may be seen that graphite epoxy systems do not show significant
stiffness loss (Figure 4) and, therefore, it is difficult to conclude anything about
the accuracy of the model. For the glass/epoxy laminate, the present results are
higher than test data as well as the lower bound results in [5, 8] and the

difference increases for larger w. We note that the lower values obtained from
tests may be attributed to growth of delaminations at interfaces originating from
the ply cracks. Using the concept of additional energy loss due to such
delaminations described in equation (25), we find that to match the test data at
w - 0.5, it is necessary to choose
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U2 = 2e/I - 0.15 (26)

which indicates that (since w = 0.5)

e/a - 0.15 (27)

Thus, the total delamination length 2e at each interface near a crack is about
0.15 times the thickness of the cracked layer. Delaminations are expected to
become larger at higher loads and cause complete separation of the cracked
layers.

Using the concept of energy release rate described by equations (8), (10)
and (11) we find

Gc A 210 Joules/m 2  (28)

Ro A 345x10 3 Pa

to match the test data for increase in crack density with applied stress. The

comparison of experimental values with the prediction is shown in Figure 6. The

results [8] are based on Gc = 330 Joules/m 2 , but an assumed value of
residual transverse tensile stress in the 900 layer.

DISCUSSIONS

We have shown that phenomenological considerations, when supported by
some mechanical models, can provide simple yet very accurate representation
of the phenomenon of ply crack growth. Suitable modifications may also be
included, if desired, for considering delamination growth from such ply cracks.
The model (for dilute concentrations) has also been used for simulating the
responses of angle ply laminates [3, 4], but utilizing a fitted power law type
relation between crack density and energy release rate. Use of the fracture
mechanics concept (equations (8) and (10) as used here for (0 / 9 0 3)s glass/epoxy
laminate under tension) to angle ply and other laminate configurations should be
attempted in future studies.
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Table 1. Material Properties

Property Glass/Epoxy Graphite/Epoxy

EA = Ell 41.7 GPa 130 GPa

ET = E22 = E33 13.0 GPa 10.5 GPa

VA = v1 2 =v 1 3  0.3 0.35

VT = V23 0.3 0.31

GA = G 1 2 = G 1 3  3.4 GPa 6.0 GPa

GT = G2 3  5.0 GPa 4.0 GPa

h = Ply thickness 0.203 mm 0.127 mm

a 0.609 mm 0.127 mm

NOTE: A and T denote axial and transverse directions

Table 2. Values of ETC, and GAC2 *

Quantity Method (0/90)3s GI/Ep (0/90). Gr/Ep

ETC1 Finite Element 2.78 2.22

Estimated [4] 2.8 1.98

GA C 2  Finite Element -- 1.69

Estimated [4] "- = 1.57
2

*ET, GA are the transverse Young's modulus and
axial shear modulus of the laminae listed in Table 1.

Table 3. Values of f1 (w) and f2 (w)

fl(w) f 2 (w)
W (0/90)U GI/Ep (0/90). Gr/Ep (0/90)s Gr/Ep

0 1 1 1

0.05 =1 =1 =1

0.1 1 1 0.971

0.3 0.768 0.890 0.827

0.5 0.564 0.685 0.694

2.0 0.165 0.210 0.262
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Figure 1. Stored Strain and Complementary Energies
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Figure 2. A Cracked Layer in a Laminate-Dilute Concentration
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Figure 3. Equally Spaced Ply Cracks in a Layer
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MATLS TECH LAB DEPT MECH ENGRG
SLCMT-MRS 1400 TOWNSEND DR
WATERTOWN MA 02172-0001 HOUGHTON MI 49931-1295
(617)-923-5025 (906)-487-2009
FAX: ( )- - FAX: (906)-487-2822
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PROF SUBRA SURESH PROF P S SYMONDS
BROWN UNIV BROWN UNIV
DIV OF ENGRG DEPT OF ENGRG
BOX D BOX D
PROVIDENCE RI 02912-0001 PROVIDENCE RI 02912-0001

(401)-863-1484
FAX: ( )- - FAX: (401)-863-1157

MS YIM HAR TANG DR ROBERT K THOMAS
US DEPT OF TRANS SANDIA NATL LABS
M/S SQUARE DTS-76 APPLIED MECH DIV 1544
55 BROADWAY PO BOX 5800
CAMBRIDGE MA 02142-0001 ALBUQUERQUE NM 87185-5800

(505)-844-7450
FAX: ( )- - FAX: (505)-846-9833

DR DOUGLAS THOMSON PROF THOMAS C T TING
FOSTER-MILLER INC UNIV OF IL AT CHICAGO
350 SECOND AVE CEMM DEPT (M/C246)
WALTHAM MA 02154-0001 PO BOX 4348

CHICAGO IL 60680-0001
FAX: ( )- - (312)-996-2429

FAX: (312)-996-2426

DR DENNIS TRACEY DR AMPERE A TSENG
NORTON CO DREXEL UNIV
GODDARD RD COLLEGE OF ENGRG
NORTHBORO MA 01532-1545 DEPT OF MECH ENGRG
(508)-351-7811 PHILADELPHIA PA 19104-0001
FAX: (508)-351-7700 (215)-895-2370

FAX: ( )- -

DR TIEN TSUI MS KELLIE UNSWORTH
US ARMY US ARMY
MATLS TECH LAB SAVRT-TY-ASV
SLCMT-MRS FT EUSTIS VA 23604-5577
WATERTOWN MA 02172-0001 (804)-878-5838
(617)-923-5165 FAX: (804)-878-3108
FAX: (617)-923-5154

MS MELANIE G VIOLETTE DR TUSIT WEERASOORIYA
RPI US ARMY
RD4 BOX 5A MATLS TECH LAB
HUDSON NY 12534-0001 SLCMT-MRD
(518)-851-3503 WATERTOWN MA 02172-0001
FAX: ( )- -

FAX: ( )- -
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DR CHARLES S WHITE MR MICHAEL W WICKS
US ARMY US ARMY
MATLS TECH LAB AMSMI-RD-ST-SA
BLDG 39 BLDG 5400
SLCMT-MRD REDSTONE ARSENAL AL 35898-5247
WATERTOWN MA 02172-0001 (205)-876-7459
(617)-923-5404 FAX: (205)-876-9861
FAX: ( )- -

MR JONG-HO WOO DR JULIAN J WU
US ARMY US ARMY RES OFC
BLDG 1065 MATH SCIENCE DIV
SLCBR-VLD-A SLCRO-MA
APG MD 21005-5066 PO BOX 12211
(301)-278-2329 RES TRIANGLE PARK NC 27709-2211
FAX: (301)-278-7266

FAX: ( )- -

MS MARGARET M ZAMORA MR NIN ZHOU
US DEPT OF TRANS BROWH UNIV
DYNATREND PO BOX D
55 BROADWAY PROVIDENCE RI 02912-0001
CAMBRIDGE MA 02142-0001 (401)-863-3034
(617)-494-3448 FAX: (401)-863-1157
FAX: (617)-494"-2569
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